No Arabic abstract
A vast variety of real-life networks display the ubiquitous presence of scale-free phenomenon and small-world effect, both of which play a significant role in the dynamical processes running on networks. Although various dynamical processes have been investigated in scale-free small-world networks, analytical research about random walks on such networks is much less. In this paper, we will study analytically the scaling of the mean first-passage time (MFPT) for random walks on scale-free small-world networks. To this end, we first map the classical Koch fractal to a network, called Koch network. According to this proposed mapping, we present an iterative algorithm for generating the Koch network, based on which we derive closed-form expressions for the relevant topological features, such as degree distribution, clustering coefficient, average path length, and degree correlations. The obtained solutions show that the Koch network exhibits scale-free behavior and small-world effect. Then, we investigate the standard random walks and trapping issue on the Koch network. Through the recurrence relations derived from the structure of the Koch network, we obtain the exact scaling for the MFPT. We show that in the infinite network order limit, the MFPT grows linearly with the number of all nodes in the network. The obtained analytical results are corroborated by direct extensive numerical calculations. In addition, we also determine the scaling efficiency exponents characterizing random walks on the Koch network.
Various real-life networks exhibit degree correlations and heterogeneous structure, with the latter being characterized by power-law degree distribution $P(k)sim k^{-gamma}$, where the degree exponent $gamma$ describes the extent of heterogeneity. In this paper, we study analytically the average path length (APL) of and random walks (RWs) on a family of deterministic networks, recursive scale-free trees (RSFTs), with negative degree correlations and various $gamma in (2,1+frac{ln 3}{ln 2}]$, with an aim to explore the impacts of structure heterogeneity on APL and RWs. We show that the degree exponent $gamma$ has no effect on APL $d$ of RSFTs: In the full range of $gamma$, $d$ behaves as a logarithmic scaling with the number of network nodes $N$ (i.e. $d sim ln N$), which is in sharp contrast to the well-known double logarithmic scaling ($d sim ln ln N$) previously obtained for uncorrelated scale-free networks with $2 leq gamma <3$. In addition, we present that some scaling efficiency exponents of random walks are reliant on degree exponent $gamma$.
In this paper, we define a stochastic Sierpinski gasket, on the basis of which we construct a network called random Sierpinski network (RSN). We investigate analytically or numerically the statistical characteristics of RSN. The obtained results reveal that the properties of RSN is particularly rich, it is simultaneously scale-free, small-world, uncorrelated, modular, and maximal planar. All obtained analytical predictions are successfully contrasted with extensive numerical simulations. Our network representation method could be applied to study the complexity of some real systems in biological and information fields.
The class of Koch fractals is one of the most interesting families of fractals, and the study of complex networks is a central issue in the scientific community. In this paper, inspired by the famous Koch fractals, we propose a mapping technique converting Koch fractals into a family of deterministic networks, called Koch networks. This novel class of networks incorporates some key properties characterizing a majority of real-life networked systems---a power-law distribution with exponent in the range between 2 and 3, a high clustering coefficient, small diameter and average path length, and degree correlations. Besides, we enumerate the exact numbers of spanning trees, spanning forests, and connected spanning subgraphs in the networks. All these features are obtained exactly according to the proposed generation algorithm of the networks considered. The network representation approach could be used to investigate the complexity of some real-world systems from the perspective of complex networks.
Many real networks share three generic properties: they are scale-free, display a small-world effect, and show a power-law strength-degree correlation. In this paper, we propose a type of deterministically growing networks called Sierpinski networks, which are induced by the famous Sierpinski fractals and constructed in a simple iterative way. We derive analytical expressions for degree distribution, strength distribution, clustering coefficient, and strength-degree correlation, which agree well with the characterizations of various real-life networks. Moreover, we show that the introduced Sierpinski networks are maximal planar graphs.
Virtually all real-world networks are dynamical entities. In social networks, the propensity of nodes to engage in social interactions (activity) and their chances to be selected by active nodes (attractiveness) are heterogeneously distributed. Here, we present a time-varying network model where each node and the dynamical formation of ties are characterised by these two features. We study how these properties affect random walk processes unfolding on the network when the time scales describing the process and the network evolution are comparable. We derive analytical solutions for the stationary state and the mean first passage time of the process and we study cases informed by empirical observations of social networks. Our work shows that previously disregarded properties of real social systems such heterogeneous distributions of activity and attractiveness as well as the correlations between them, substantially affect the dynamical process unfolding on the network.