Do you want to publish a course? Click here

Gamma Ray Spectroscopy with Scintillation Light in Liquid Xenon

111   0   0.0 ( 0 )
 Added by Kaixuan Ni
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Scintillation light from gamma ray irradiation in liquid xenon is detected by two Hamamatsu R9288 photomultiplier tubes (PMTs) immersed in the liquid. UV light reflector material, PTFE, is used to optimize the light collection efficiency. The detector gives a high light yield of 6 photoelectron per keV (pe/keV), which allows efficient detection of the 122 keV gamma-ray line from Co-57, with a measured energy resolution of (8.8+/-0.6)% (sigma). The best achievable energy resolution, by removing the instrumental fluctuations, from liquid xenon scintillation light is estimated to be around 6-8% (sigma) for gamma-ray with energy between 662 keV and 122 keV.



rate research

Read More

117 - E. Aprile 2005
We have studied the feasibility of a silicon photomultiplier (SiPM) to detect liquid xenon (LXe) scintillation light. The SiPM was operated inside a small volume of pure LXe, at -95 degree Celsius, irradiated with an internal Am-241 alpha source. The gain of the SiPM at this temperature was estimated to be 1.8 x 10^6 with bias voltage at 52 V. Based on the geometry of the setup, the quantum efficiency of the SiPM was estimated to be 22% at the Xe wavelength of 178 nm. The low excess noise factor, high single photoelectron detection efficiency, and low bias voltage of SiPMs make them attractive alternative UV photon detection devices to photomultiplier tubes (PMTs) for liquid xenon detectors, especially for experiments requiring a very low energy detection threshold, such as neutralino dark matter searches.
359 - D.E. Fields , R. Gibbons , M. Gold 2020
Scintillation from noble gases is an important technique in particle physics including neutrino beam experiments, neutrino-less double beta-decay and dark matter searches. In liquid argon, the possibility of enhancing the light yield by the addition of a small quantity of xenon (doping at 10-1000 ppm) has been of particular interest. While the pathway for energy transfer between argon and xenon excimers is well known, the time-dependence of the process has not been fully studied in the context of a physics-based model. In this paper we present a model of the energy transfer process together with a fit to xenon-doped argon data. We have measured the diffusion limited rate constant as a function of xenon dopant. We find that the time dependence of the energy transfer is consistent with diffusion-limited reactions. Additionally, we find that commercially obtained argon can have a small xenon component (4 ppm). Our result will facilitate the use of xenon-doped liquid argon in future experiments.
212 - A.Baldini , C.Bemporad , F.Cei 2004
An 800L liquid xenon scintillation $gamma$ ray detector is being developed for the MEG experiment which will search for $mu^+tomathrm{e}^+gamma$ decay at the Paul Scherrer Institut. Absorption of scintillation light of xenon by impurities might possibly limit the performance of such a detector. We used a 100L prototype with an active volume of 372x372x496 mm$^3$ to study the scintillation light absorption. We have developed a method to evaluate the light absorption, separately from elastic scattering of light, by measuring cosmic rays and $alpha$ sources. By using a suitable purification technique, an absorption length longer than 100 cm has been achieved. The effects of the light absorption on the energy resolution are estimated by Monte Carlo simulation.
137 - K.Ueshima , K.Abe , K.Hiraide 2011
In a dedicated test setup at the Kamioka Observatory we studied pulse shape discrimination (PSD) in liquid xenon (LXe) for dark matter searches. PSD in LXe was based on the observation that scintillation light from electron events was emitted over a longer period of time than that of nuclear recoil events, and our method used a simple ratio of early to total scintillation light emission in a single scintillation event. Requiring an efficiency of 50% for nuclear recoil retention we reduced the electron background to 7.7pm1.1(stat)pm1.2 0.6(sys)times10-2 at energies between 4.8 and 7.2 keVee and to 7.7pm2.8(stat)pm2.5 2.8(sys)times10-3 at energies between 9.6 and 12 keVee for a scintillation light yield of 20.9 p.e./keV. Further study was done by masking some of that light to reduce this yield to 4.6 p.e./keV, the same method results in an electron event reduction of 2.4pm0.2(stat)pm0.3 0.2(sys)times10-1 for the lower of the energy regions above. We also observe that in contrast to nuclear recoils the fluctuations in our early to total ratio for electron events are larger than expected from statistical fluctuations.
393 - K. Ni , E. Aprile , D. Day 2005
Scintillation light produced in liquid xenon (LXe) by alpha particles, electrons and gamma-rays was detected with a large area avalanche photodiode (LAAPD) immersed in the liquid. The alpha scintillation yield was measured as a function of applied electric field. We estimate the quantum efficiency of the LAAPD to be 45%. The best energy resolution from the light measurement at zero electric field is 7.5%(sigma) for 976 keV internal conversion electrons from Bi-207 and 2.6%(sigma) for 5.5 MeV alpha particles from Am-241. The detector used for these measurements was also operated as a gridded ionization chamber to measure the charge yield. We confirm that using a LAAPD in LXe does not introduce impurities which inhibit the drifting of free electrons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا