No Arabic abstract
We investigate the accumulated wealth distribution by adopting evolutionary games taking place on scale-free networks. The system self-organizes to a critical Pareto distribution (1897) of wealth $P(m)sim m^{-(v+1)}$ with $1.6 < v <2.0$ (which is in agreement with that of U.S. or Japan). Particularly, the agents personal wealth is proportional to its number of contacts (connectivity), and this leads to the phenomenon that the rich gets richer and the poor gets relatively poorer, which is consistent with the Matthew Effect present in society, economy, science and so on. Though our model is simple, it provides a good representation of cooperation and profit accumulation behavior in economy, and it combines the network theory with econophysics.
We study the betweenness centrality of fractal and non-fractal scale-free network models as well as real networks. We show that the correlation between degree and betweenness centrality $C$ of nodes is much weaker in fractal network models compared to non-fractal models. We also show that nodes of both fractal and non-fractal scale-free networks have power law betweenness centrality distribution $P(C)sim C^{-delta}$. We find that for non-fractal scale-free networks $delta = 2$, and for fractal scale-free networks $delta = 2-1/d_{B}$, where $d_{B}$ is the dimension of the fractal network. We support these results by explicit calculations on four real networks: pharmaceutical firms (N=6776), yeast (N=1458), WWW (N=2526), and a sample of Internet network at AS level (N=20566), where $N$ is the number of nodes in the largest connected component of a network. We also study the crossover phenomenon from fractal to non-fractal networks upon adding random edges to a fractal network. We show that the crossover length $ell^{*}$, separating fractal and non-fractal regimes, scales with dimension $d_{B}$ of the network as $p^{-1/d_{B}}$, where $p$ is the density of random edges added to the network. We find that the correlation between degree and betweenness centrality increases with $p$.
The Matthew effect refers to the adage written some two-thousand years ago in the Gospel of St. Matthew: For to all those who have, more will be given. Even two millennia later, this idiom is used by sociologists to qualitatively describe the dynamics of individual progress and the interplay between status and reward. Quantitative studies of professional careers are traditionally limited by the difficulty in measuring progress and the lack of data on individual careers. However, in some professions, there are well-defined metrics that quantify career longevity, success, and prowess, which together contribute to the overall success rating for an individual employee. Here we demonstrate testable evidence of the age-old Matthew rich get richer effect, wherein the longevity and past success of an individual lead to a cumulative advantage in further developing his/her career. We develop an exactly solvable stochastic career progress model that quantitatively incorporates the Matthew effect, and validate our model predictions for several competitive professions. We test our model on the careers of 400,000 scientists using data from six high-impact journals, and further confirm our findings by testing the model on the careers of more than 20,000 athletes in four sports leagues. Our model highlights the importance of early career development, showing that many careers are stunted by the relative disadvantage associated with inexperience.
This letter propose a new model for characterizing traffic dynamics in scale-free networks. With a replotted road map of cities with roads mapped to vertices and intersections to edges, and introducing the road capacity L and its handling ability at intersections C, the model can be applied to urban traffic system. Simulations give the overall capacity of the traffic system which is quantified by a phase transition from free flow to congestion. Moreover, we report the fundamental diagram of flow against density, in which hysteresis is found, indicating that the system is bistable in a certain range of vehicle density. In addition, the fundamental diagram is significantly different from single-lane traffic model and 2-D BML model with four states: free flow, saturated flow, bistable and jammed.
In this paper, we study traffic dynamics in scale-free networks in which packets are generated with non-homogeneously selected sources and destinations, and forwarded based on the local routing strategy. We consider two situations of packet generation: (i) packets are more likely generated at high-degree nodes; (ii) packets are more likely generated at low-degree nodes. Similarly, we consider two situations of packet destination: (a) packets are more likely to go to high-degree nodes; (b) packets are more likely to go to low-degree nodes. Our simulations show that the network capacity and the optimal value of $alpha$ corresponding to the maximum network capacity greatly depend on the configuration of packets sources and destinations. In particular, the capacity is greatly enhanced when most packets travel from low-degree nodes to high-degree nodes.
Many real networks share three generic properties: they are scale-free, display a small-world effect, and show a power-law strength-degree correlation. In this paper, we propose a type of deterministically growing networks called Sierpinski networks, which are induced by the famous Sierpinski fractals and constructed in a simple iterative way. We derive analytical expressions for degree distribution, strength distribution, clustering coefficient, and strength-degree correlation, which agree well with the characterizations of various real-life networks. Moreover, we show that the introduced Sierpinski networks are maximal planar graphs.