Do you want to publish a course? Click here

A PMT-Block test bench

351   0   0.0 ( 0 )
 Added by Tarcisio Delprete
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The front-end electronics of the ATLAS hadronic calorimeter (Tile Cal) is housed in a unit, called {it PMT-Block}. The PMT-Block is a compact instrument comprising a light mixer, a PMT together with its divider and a {it 3-in-1} card, which provides shaping, amplification and integration for the signals. This instrument needs to be qualified before being assembled on the detector. A PMT-Block test bench has been developed for this purpose. This test bench is a system which allows fast, albeit accurate enough, measurements of the main properties of a complete PMT-Block. The system, both hardware and software, and the protocol used for the PMT-Blocks characterisation are described in detail in this report. The results obtained in the test of about 10000 PMT-Blocks needed for the instrumentation of the ATLAS (LHC-CERN) hadronic Tile Calorimeter are also reported.



rate research

Read More

251 - T.Jinno , T.Mori , T.Ohshima 2010
In order to develop a long-lifetime MCP-PMT under high rates of circumstance, we investigated the degradation of the quantum efficiency (QE) of PMTs with a multialkali photocathode. We found that not only positive ions, but also neutral residual gases would damage the photocathode resulting in an enhancement of the work function; their countermeasures were established in newly manufactured square-shaped MCP-PMTs with 4 or 4x4 multi-anodes. The performances of the PMTs were measured: QE was stable up to an integrated amount of anode output charge of 2-3 C/cm^2, while keeping other basic performances steady, such as the time resolution for single photons of ~40 ps, a photoelectron collection efficiency (CE) of 60%, a multiplication gain (G) of a few x 10^6, and dark counts of 20-300 Hz. The causes of QE degradation are discussed.
In this paper, we present the infrared coronagraphic test bench of the University of Li`ege named VODCA (Vortex Optical Demonstrator for Coronagraphic Applications). The goal of the bench is to assess the performances of the Annular Groove Phase Masks (AGPMs) at near- to mid-infrared wavelengths. The AGPM is a subwavelength grating vortex coronagraph of charge two (SGVC2) made out of diamond. The bench is designed to be completely achromatic and will be composed of a super continuum laser source emitting in the near to mid-infrared, several parabolas, diaphragms and an infrared camera. This way, we will be able to test the different AGPMs in the M, L, K and H bands. Eventually, the bench will also allow the computation of the incident wavefront aberrations on the coronagraph. A reflective Lyot stop will send most of the stellar light to a second camera to perform low-order wavefront sensing. This second system coupled with a deformable mirror will allow the correction of the wavefront aberrations. We also aim to test other pre- and/or post-coronagraphic concepts such as optimal apodization.
117 - Yu Liang , Lei Zhao , Yuxiang Guo 2019
Time and charge measurements over a large dynamic range from 1 Photo Electron (P.E.) to 4000 P.E. are required for the Water Cherenkov Detector Array (WCDA), which is one of the key components in the Large High Altitude Air Shower Observatory (LHAASO). To simplify the circuit structure of the readout electronics, a front end ASIC was designed. Based on the charge-to-time conversion method, the output pulse width of the ASIC corresponds to the input signal charge information while time information of the input signal is picked off through a discriminator, and thus the time and charge information can be digitized simultaneously using this ASIC and a following Time-to-Digital Converter (TDC). To address the challenge of mismatch among the channels observed in the previous prototype version, this work presents approaches for analyzing the problem and optimizing the circuits. A new version of the ASIC was designed and fabricated in the GLOBALFOUNDRIES 0.35 um CMOS technology, which integrates 6 channels (corresponding to the readout of the 3 PMTs) in each chip. The test results indicate that the mismatch between the channels is significantly reduced to less than 20% using the proposed approach. The time measurement resolution better than 300 ps is achieved, and the charge measurement resolution is better than 10% at 1 P.E., and 1% at 4000 P.E., which meets the application requirements.
179 - K.Inami , T.Mori , T.Matsumura 2008
We have developed a 4-channel multi-anode MCP-PMT, SL10, which exhibits a performance of sigma_TTS ~ 30 ps for single photons with G ~ 10^6 and QE=20% under a magnetic field of B <= 1.5 T. The cross-talk among anodes has been extensively studied. We have taken two measures to suppress it: one is to configure the SL10 to an effectively independent 4 small pieces of MCP-PMTs by segmenting an electrode of the second MCP-layer; the other is to use a constant fractional discriminator. Remarkable improvement has been achieved.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا