No Arabic abstract
The recently introduced method of excess collisions (MEC) is modified to estimate diffusion-controlled reaction times inside systems of arbitrary size. The resulting MEC-E equations contain a set of empirical parameters, which have to be calibrated in numerical simulations inside a test system of moderate size. Once this is done, reaction times of systems of arbitrary dimensions are derived by extrapolation, with an accuracy of 10 to 15 percent. The achieved speed up, when compared to explicit simulations of the reaction process, is increasing proportional to the extrapolated volume of the cell.
The diffusion-controlled limit of reaction times for site-specific DNA-binding proteins is derived from first principles. We follow the generally accepted concept that a protein propagates via two competitive modes, a three-dimensional diffusion in space and a one-dimensional sliding along the DNA. However, our theoretical treatment of the problem is new. The accuracy of our analytical model is verified by numerical simulations. The results confirm that the unspecific binding of protein to DNA, combined with sliding, is capable to reduce the reaction times significantly.
In this paper, a new method to efficiently simulate diffusion controlled second order chemical reactions is derived and applied to site-specific DNA-binding proteins. The protein enters a spherical cell and propagates via two competing modes, a free diffusion and a DNA-sliding mode, to search for its specific binding site in the center of the cell. There is no need for a straightforward simulation of this process. Instead, an alternative and exact approach is shown to be essentially faster than explicit random-walk simulations. The speed-up of this novel simulation technique is rapidly growing with system size.
We present a theoretical model of facilitated diffusion of proteins in the cell nucleus. This model, which takes into account the successive binding/unbinding events of proteins to DNA, relies on a fractal description of the chromatin which has been recently evidenced experimentally. Facilitated diffusion is shown quantitatively to be favorable for a fast localization of a target locus by a transcription factor, and even to enable the minimization of the search time by tuning the affinity of the transcription factor with DNA. This study shows the robustness of the facilitated diffusion mechanism, invoked so far only for linear conformations of DNA.
In living cells, proteins combine 3D bulk diffusion and 1D sliding along the DNA to reach a target faster. This process is known as facilitated diffusion, and we investigate its dynamics in the physiologically relevant case of confined DNA. The confining geometry and DNA elasticity are key parameters: we find that facilitated diffusion is most efficient inside an isotropic volume, and on a flexible polymer. By considering the typical copy numbers of proteins in vivo, we show that the speedup due to sliding becomes insensitive to fine tuning of parameters, rendering facilitated diffusion a robust mechanism to speed up intracellular diffusion-limited reactions. The parameter range we focus on is relevant for in vitro systems and for facilitated diffusion on yeast chromatin.
In living cells, protein-rich condensates can wet the cell membrane and surfaces of membrane-bound organelles. Interestingly, many phase-separating proteins also bind to membranes leading to a molecular layer of bound molecules. Here we investigate how binding to membranes affects surface phase transitions such as wetting and prewetting. We derive a thermodynamic theory for a three-dimensional bulk in the presence of a two-dimensional, flat membrane. Above the saturation concentration, we find that membrane binding facilitates complete wetting and lowers the wetting angle. Moreover, below the saturation concentration, binding facilitates the formation of a thick layer at the membrane and thereby shifts the prewetting phase transition far below the saturation concentration. The distinction between bound and unbound molecules near the surface leads to a large variety of prewetted states. Our work suggests that surface phase transitions combined with molecular binding represent a versatile mechanism to control the formation of protein-rich domains at intra-cellular surfaces.