Do you want to publish a course? Click here

Beam Profile Measurements and Simulations of the PETRA Laser-Wire

326   0   0.0 ( 0 )
 Added by John Carter
 Publication date 2005
  fields Physics
and research's language is English
 Authors J. Carter




Ask ChatGPT about the research

The Laser-wire will be an essential diagnostic tool at the International Linear Collider. It uses a finely focussed laser beam to measure the transverse profile of electron bunches by detecting the Compton-scattered photons (or degraded electrons) downstream of where the laser beam intersects the electron beam. Such a system has been installed at the PETRA storage ring at DESY, which uses a piezo-driven mirror to scan the laser-light across the electron beam. Lat- est results of experimental data taking are presented and compared to detailed simulations using the Geant4 based program BDSIM.



rate research

Read More

A conceptual design work and a basic experimental study of a new beam profile monitor have been performed. The monitor will be used to measure emittance of an electron beam in the ATF damping ring at KEK, in which the transverse beam size of about 10 micron is expected. It utilizes a CW laser and an optical cavity, instead of a material wire, to minimize interference with an electron beam. A laser beam with a very thin waist is realized by employing the cavity of nearly concentric mirror configuration while the intensity is amplified by adjusting the cavity length to a Fabry-Perot resonance condition. We built a test cavity to establish a method to measure important parameters such as a laser beam waist and a power enhancement factor. Three independent methods were examined for the measurement of the beam waist. It was found that the cavity realized the beam waist of 20 micron with the power enhancement factor of 50.
Ions with similar charge-to-mass ratios cannot be separated from existing beam profile monitors (BPMs) in nuclear facilities in which low-energy radioactive ions are produced due to nuclear fusion reactions. In this study, we developed a BPM using a microchannel plate and a charge-coupled device to differentiate the beam profiles of alpha-decaying radioactive isotopes from other ions (reaction products) produced in a nuclear reaction. This BPM was employed to optimize the low-energy radioactive francium ion (Fr+) beam developed at the Cyclotron and Radioisotope Center (CYRIC), Tohoku University, for electron permanent electric dipole moment (e-EDM) search experiments using Fr atoms. We demonstrated the performance of the BPM by separating the Fr+ beam from other reaction products produced during the nuclear fusion reaction of an oxygen (18O) beam and gold (197Au) target. However, as the mass of Au is close to that of Fr, separating the ions of these elements using a mass filter is a challenge, and a dominant number of Au+ renders the Fr+ beam profile invisible when using a typical BPM. Therefore, by employing the new BPM, we could successfully observe the Fr+ beam and other ion beams distinctly by measuring the alpha decay of Fr isotopes. This novel technique to monitor the alpha-emitting radioactive beam covers a broad range of lifetimes, for example, from approximately 1 s to 10 min, and can be implemented for other alpha-emitter beams utilized for medical applications.
65 - Y. Nakano , R Igosawa , S. Iida 2020
Recently, we reported the commissioning of the new cryogenic ion storage ring RICE, which demonstrated potential capabilities for the precise studies of molecular structures and reaction dynamics. In the present article, we describe the status of experimental programs ongoing at RICE with a focus on the laser spectroscopy and merged-beam collision experiments.
We present a non-destructive beam profile imaging concept that utilizes machine learning tools, namely genetic algorithm with a gradient descent-like minimization. Electromagnetic fields around a charged beam carry information about its transverse profile. The electrodes of a stripline-type beam position monitor (with eight probes in this study) can pick up that information for visualization of the beam profile. We use a genetic algorithm to transform an arbitrary Gaussian beam in such a way that it eventually reconstructs the transverse position and the shape of the original beam. The algorithm requires a signal that is picked up by the stripline electrodes, and a (precise or approximate) knowledge of the beam size. It can visualize the profile of fairly distorted beams as well.
The high design luminosity of the SuperKEKB electron-positron collider is expected to result in challenging levels of beam-induced backgrounds in the interaction region. Properly simulating and mitigating these backgrounds is critical to the success of the Belle~II experiment. We report on measurements performed with a suite of dedicated beam background detectors, collectively known as BEAST II, during the so-called Phase 1 commissioning run of SuperKEKB in 2016, which involved operation of both the high energy ring (HER) of 7 GeV electrons as well as the low energy ring (LER) of 4 GeV positrons. We describe the BEAST II detector systems, the simulation of beam backgrounds, and the measurements performed. The measurements include standard ones of dose rates versus accelerator conditions, and more novel investigations, such as bunch-by-bunch measurements of injection backgrounds and measurements sensitive to the energy spectrum and angular distribution of fast neutrons. We observe beam-gas, Touschek, beam-dust, and injection backgrounds. We do not observe significant synchrotron radiation, as expected. Measured LER beam-gas backgrounds and Touschek backgrounds in both rings are slightly elevated, on average three times larger than the levels predicted by simulation. HER beam-gas backgrounds are on on average two orders of magnitude larger than predicted. Systematic uncertainties and channel-to-channel variations are large, so that these excesses constitute only 1-2 sigma level effects. Neutron background rates are higher than predicted and should be studied further. We will measure the remaining beam background processes, due to colliding beams, in the imminent commissioning Phase 2. These backgrounds are expected to be the most critical for Belle II, to the point of necessitating replacement of detector components during the Phase 3 (full-luminosity) operation of SuperKEB.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا