Do you want to publish a course? Click here

A model for rapid stochastic distortions of small-scale turbulence

148   0   0.0 ( 0 )
 Added by Jean-Philippe Laval
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a model describing evolution of the small-scale Navier-Stokes turbulence due to its stochastic distortions by much larger turbulent scales. This study is motivated by numerical findings (laval, 2001) that such interactions of separated scales play important role in turbulence intermittency. We introduce description of turbulence in terms of the moments of the k-space quantities using a method previously developed for the kinematic dynamo problem (Nazarenko, 2003). Working with the $k$-space moments allows to introduce new useful measures of intermittency such as the mean polarization and the spectral flatness. Our study of the 2D turbulence shows that the energy cascade is scale invariant and Gaussian whereas the enstrophy cascade is intermittent. In 3D, we show that the statistics of turbulence wavepackets deviates from gaussianity toward dominance of the plane polarizations. Such turbulence is formed by ellipsoids in the $k$-space centered at its origin and having one large, one neutral and one small axes with the velocity field pointing parallel to the smallest axis.



rate research

Read More

187 - K. Inagaki , N. Yokoi , 2017
Recent numerical simulations showed that the mean flow is generated in inhomogeneous turbulence of an incompressible fluid accompanied with helicity and system rotation. In order to investigate the mechanism of this phenomenon, we carry out a numerical simulation of inhomogeneous turbulence in a rotating system. In the simulation, an external force is applied to inject inhomogeneous turbulent helicity and the rotation axis is taken to be perpendicular to the inhomogeneous direction. No mean velocity is set in the initial condition of the simulation. The simulation results show that only in the case with both the helical forcing and the system rotation, the mean flow directed to the rotation axis is generated and sustained. We investigate the physical origin of this flow-generation phenomenon by considering the budget of the Reynolds-stress transport equation. It is found that the pressure diffusion term has a large contribution in the Reynolds stress equation and supports the generated mean flow. It is shown that a model expression for the pressure diffusion can be expressed by the turbulent helicity gradient coupled with the angular velocity of the system rotation. This implies that inhomogeneous helicity can play a significant role for the generation of the large-scale velocity distribution in incompressible turbulent flows.
Numerical simulations are made for forced turbulence at a sequence of increasing values of Reynolds number, R, keeping fixed a strongly stable, volume-mean density stratification. At smaller values of R, the turbulent velocity is mainly horizontal, and the momentum balance is approximately cyclostrophic and hydrostatic. This is a regime dominated by so-called pancake vortices, with only a weak excitation of internal gravity waves and large values of the local Richardson number, Ri, everywhere. At higher values of R there are successive transitions to (a) overturning motions with local reversals in the density stratification and small or negative values of Ri; (b) growth of a horizontally uniform vertical shear flow component; and (c) growth of a large-scale vertical flow component. Throughout these transitions, pancake vortices continue to dominate the large-scale part of the turbulence, and the gravity wave component remains weak except at small scales.
285 - Ke-Qi Ding , Kun Yang , Xiang Yang 2021
The self-similar Richardson cascade admits two logically possible scenarios of small-scale turbulence at high Reynolds numbers. In the first scenario, eddies population densities vary as a function of eddies scales. As a result, one or a few eddy types dominate at small scales, and small-scale turbulence lacks diversity. In the second scenario, eddies population densities are scale-invariant across the inertial range, resulting in small-scale diversity. That is, there are as many types of eddies at the small scales as at the large scales. In this letter, we measure eddies population densities in three-dimensional isotropic turbulence and determine the nature of small-scale turbulence. The result shows that eddies population densities are scale-invariant.
The proposed universality of small scale turbulence is investigated for a set of measurements in a cryogenic free jet with a variation of the Reynolds number (Re) from 8500 to 10^6. The traditional analysis of the statistics of velocity increments by means of structure functions or probability density functions is replaced by a new method which is based on the theory of stochastic Markovian processes. It gives access to a more complete characterization by means of joint probabilities of finding velocity increments at several scales. Based on this more precise method our results call in question the concept of universality.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا