Do you want to publish a course? Click here

A Dynamic alpha Model for the Lagrangian Averaged Navier-Stokes-alpha Equations

130   0   0.0 ( 0 )
 Added by Hongwu Zhao
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper has been withdrawn by the authors for adding some results.



rate research

Read More

A dynamic procedure for the Lagrangian Averaged Navier-Stokes-$alpha$ (LANS-$alpha$) equations is developed where the variation in the parameter $alpha$ in the direction of anisotropy is determined in a self-consistent way from data contained in the simulation itself. The dynamic model is initially tested in forced and decaying isotropic turbulent flows where $alpha$ is constant in space but it is allowed to vary in time. It is observed that by using the dynamic LANS-$alpha$ procedure a more accurate simulation of the isotropic homogeneous turbulence is achieved. The energy spectra and the total kinetic energy decay are captured more accurately as compared with the LANS-$alpha$ simulations using a fixed $alpha$. In order to evaluate the applicability of the dynamic LANS-$alpha$ model in anisotropic turbulence, a priori test of a turbulent channel flow is performed. It is found that the parameter $alpha$ changes in the wall normal direction. Near a solid wall, the length scale $alpha$ is seen to depend on the distance from the wall with a vanishing value at the wall. On the other hand, away from the wall, where the turbulence is more isotropic, $alpha$ approaches an almost constant value. Furthermore, the behavior of the subgrid scale stresses in the near wall region is captured accurately by the dynamic LANS-$alpha$ model. The dynamic LANS-$alpha$ model has the potential to extend the applicability of the LANS-$alpha$ equations to more complicated anisotropic flows.
We introduce a model of interacting singularities of Navier-Stokes, named pin,cons. They follow a Hamiltonian dynamics, obtained by the condition that the velocity field around these singularities obeys locally Navier-Stokes equations. This model can be seen of a generalization of the vorton model of Novikov, that was derived for the Euler equations. When immersed in a regular field, the pin,cons are further transported and sheared by the regular field, while applying a stress onto the regular field, that becomes dominant at a scale that is smaller than the Kolmogorov length. We apply this model to compute the motion of a dipole of pin,cons. When the initial relative orientation of the dipole is inside the interval (0, pi/2), a dipole made of pin,con of same intensity exhibits a transient collapse stage, following a scaling with dipole radius tending to 0 like (tc - t) power 0.63. For long time, the dynamics of the dipole is however repulsive, with both components running away from each other to infinity.
We investigate the all-penetrating drift velocities, due to surface wave motion in an effectively inviscid fluid that overlies a saturated porous bed of finite depth. Previous work in this area either neglects the large-scale flow between layers [Phillips (1991)] or only considers the drift above the porous layer [(Monismith (2007)]. We propose a model where flow is described by a velocity potential above the porous layer, and by Darcys law in the porous bed, with derived matching conditions at the interface between the two layers. The damping effect of the porous bed requires a complex wavenumber k and both a vertical and horizontal Stokes drift of the fluid, unlike the solely horizontal drift first derived by Stokes Stokes (1847) in a pure fluid layer. Our work provides a physical model for coral reefs in shallow seas, where fluid drift both above and within the reef is vitally important for maintaining a healthy reef ecosystem [Koehl et al. (1997), Monismith (2007)]. We compare our model with measurements by Koehl & Hadfield (2004) and also explain the vertical drift effects described in Koehl et al. (2007), who measured the exchange between a coral reef layer and the (relatively shallow) sea above.
76 - B. Dubrulle , , J. D. Gibbon 2021
We study a correspondence between the multifractal model of turbulence and the Navier-Stokes equations in $d$ spatial dimensions by comparing their respective dissipation length scales. In Kolmogorovs 1941 theory the key parameter $h$, which is an exponent in the Navier-Stokes invariance scaling, is fixed at $h=1/3$ but is allowed a spectrum of values in multifractal theory. Taking into account all derivatives of the Navier-Stokes equations, it is found that for this correspondence to hold the multifractal spectrum $C(h)$ must be bounded from below such that $C(h) geq 1-3h$, which is consistent with the four-fifths law. Moreover, $h$ must also be bounded from below such that $h geq (1-d)/3$. When $d=3$ the allowed range of $h$ is given by $h geq -2/3$ thereby bounding $h$ away from $h=-1$. The implications of this are discussed.
283 - Songze Chen , Zhaoli Guo , Kun Xu 2019
The hydrostatic equilibrium state is the consequence of the exact hydrostatic balance between hydrostatic pressure and external force. Standard finite volume or finite difference schemes cannot keep this balance exactly due to their unbalanced truncation errors. In this study, we introduce an auxiliary variable which becomes constant at isothermal hydrostatic equilibrium state and propose a well-balanced gas kinetic scheme for the Navier-Stokes equations with a global reconstruction. Through reformulating the convection term and the force term via the auxiliary variable, zero numerical flux and zero numerical source term are enforced at the hydrostatic equilibrium state instead of the balance between hydrostatic pressure and external force. Several problems are tested numerically to demonstrate the accuracy and the stability of the new scheme, and the results confirm that, the new scheme can preserve the exact hydrostatic solution. The small perturbation riding on hydrostatic equilibria can be calculated accurately. The viscous effect is also illustrated through the propagation of small perturbation and the Rayleigh-Taylor instability. More importantly, the new scheme is capable of simulating the process of converging towards hydrostatic equilibrium state from a highly non-balanced initial condition. The ultimate state of zero velocity and constant temperature is achieved up to machine accuracy. As demonstrated by the numerical experiments, the current scheme is very suitable for small amplitude perturbation and long time running under gravitational potential.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا