Reliable estimates of neutrino-nucleus reactions in the resonance-excitation region play an important role in many of the on-going and planned neutrino oscillation experiments. We study here neutrino-nucleus reactions in the delta-particle excitation region with the use of neutrino pion-production amplitudes calculated in a formalism in which the resonance contributions and the background amplitudes are treated on the same footing. Our approach leads to the neutrino-nucleus reaction cross sections that are significantly different from those obtained in the conventional approach wherein only the pure resonance amplitudes are taken into account. To assess the reliability of our formalism, we calculate the electron-nucleus scattering cross sections in the same theoretical framework; the calculated cross sections agree reasonably well with the existing data.
We present a unified relativistic approach to inclusive electron scattering based on the relativistic Fermi gas model and on a phenomenological extension of it which accounts for the superscaling behaviour of $(e,e)$ data. We present results in the $Delta$ resonance region and in the highly inelastic domain and show some application to neutrino scattering.
We present a model for electron- and neutrino-scattering off nucleons and nuclei focussing on the quasielastic and resonance region. The lepton-nucleon reaction is described within a relativistic formalism that includes, besides quasielastic scattering, the excitation of 13 N* and Delta resonances and a non-resonant single-pion background. Recent electron-scattering data is used for the state-of-the-art parametrizations of the vector form factors; the axial couplings are determined via PCAC and, in the case of the Delta resonance, the axial form factor is refitted using neutrino-scattering data. Scattering off nuclei is treated within the GiBUU framework that takes into account various nuclear effects: the local density approximation for the nuclear ground state, mean-field potentials and in-medium spectral functions. Results for inclusive scattering off Oxygen are presented and, in the case of electron-induced reactions, compared to experimental data and other models.
The methods used in the evaluation of the neutrino-nucleus cross section are reviewed. Results are shown for a variety of targets of practical importance. Many of the described reactions are accessible in future experiments with neutrino sources from the pion and muon decays at rest, which might be available at the neutron spallation facilities. Detailed comparison between the experimental and theoretical results would establish benchmarks needed for verification and/or parameter adjustment of the nuclear models. Having a reliable tool for such calculation is of great importance in a variety of applications, e.g. the neutrino oscillation studies, detection of supernova neutrinos, description of the neutrino transport in supernovae, and description of the r-process nucleosynthesis.
We calculate transverse response functions for quasi-elastic electron scattering at high momentum transfers in a relativistic Hartree approximation in configuration space. We treat the excitation of the $Delta$ resonance using its free mass and width. Good agreement with experiment is found in the dip region.
We present a systematic study of the sensitivity of quasielastic neutrino-nucleus cross sections at intermediate energies to the strange quark sea of the nucleon. To this end, we investigate the impact of the weak strangeness form factors on the ratio of proton-to-neutron knockout, the ratio of neutral-to-charged current cross sections, on the Paschos-Wolfenstein relation, and on the longitudinal helicity asymmetry. The influence of axial as well as vector strangeness effects is discussed. For the latter, we introduce strangeness parameters from various hadron models and from a recent fit to data from parity violating electron scattering. In our model, the nuclear target is described in terms of a relativistic mean-field approach. The effects of final-state interactions on the outgoing nucleon are quantified within a relativistic multiple-scattering Glauber approach. Our results are illustrated with cross sections for the scattering of 1 GeV neutrinos and antineutrinos off a $^{12}$C target. Folding with a proposed FINeSSE (anti)neutrino energy-distribution has no qualitative influence on the overall sensitivity of the cross-section ratios to strangeness mechanisms. We show that vector strangeness effects are large and strongly $Q^2$ dependent.