Do you want to publish a course? Click here

Electron- and neutrino-nucleus scattering from the quasielastic to the resonance region

430   0   0.0 ( 0 )
 Added by Tina Leitner
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We present a model for electron- and neutrino-scattering off nucleons and nuclei focussing on the quasielastic and resonance region. The lepton-nucleon reaction is described within a relativistic formalism that includes, besides quasielastic scattering, the excitation of 13 N* and Delta resonances and a non-resonant single-pion background. Recent electron-scattering data is used for the state-of-the-art parametrizations of the vector form factors; the axial couplings are determined via PCAC and, in the case of the Delta resonance, the axial form factor is refitted using neutrino-scattering data. Scattering off nuclei is treated within the GiBUU framework that takes into account various nuclear effects: the local density approximation for the nuclear ground state, mean-field potentials and in-medium spectral functions. Results for inclusive scattering off Oxygen are presented and, in the case of electron-induced reactions, compared to experimental data and other models.



rate research

Read More

We illustrate the connection between electron and neutrino scattering off nuclei and show how the former process can be used to constrain the description of the latter. After reviewing some of the nuclear models commonly used to study lepton-nucleus reactions, we describe in detail the SuSAv2 model and show how its predictions compare with the available electron- and neutrino-scattering data over the kinematical range going from the quasi-elastic peak to pion-production and highly inelastic scattering.
495 - T. Leitner , U. Mosel 2010
We apply the GiBUU model to questions relevant for current and future neutrino long-baseline experiments, we address in particular the relevance of charged-current reactions for neutrino disappearance experiments. A correct identification of charged-current quasielastic (CCQE) events - which is the signal channel in oscillation experiments - is relevant for the neutrino energy reconstruction and thus for the oscillation result. We show that about 20% of the quasielastic cross section is misidentified in present-day experiments and has to be corrected for by means of event generators. Furthermore, we show that also a significant part of 1pi+ (> 40%) events is misidentified as CCQE mainly caused by the pion absorption in the nucleus. We also discuss the dependence of both of these numbers on experimental detection thresholds. We further investigate the influence of final-state interactions on the neutrino energy reconstruction.
The neutral-current neutrino-nucleus scattering is calculated through the neutrino-induced knocked-out nucleon process in the quasielastic region by using a relativistic single particle model for the bound and continuum states. The incident energy range between 500 MeV and 1.0 GeV is used for the neutrino (antineutrino) scattering on ^{12}C target nucleus. The effects of the final state interaction of the knocked-out nucleon are studied not only on the cross section but also on the asymmetry due to the difference between neutrinos and antineutrinos, within a relativistic optical potential. We also investigate the sensitivity of the strange quark contents in the nucleon on the asymmetry.
We study the sensitivity of neutral-current neutrino-nucleus scattering to the strange-quark content of the axial-vector form factor of the nucleon. A model-independent formalism for this reaction is developed in terms of eight nuclear structure functions. Taking advantage of the insensitivity of the ratio of proton $( u, u p)$ to neutron $( u, u n)$ yields to distortion effects, we compute all structure functions in a relativistic plane wave impulse approximation approach. Further, by employing the notion of a bound-state nucleon propagator, closed-form, analytic expressions for all nuclear-structure functions are developed in terms of an accurately calibrated relativistic mean-field model. Using a strange-quark contribution to the axial-vector form factor of $g_{A}^{s}=-0.19$, a significant enhancement in the proton-to-neutron yields is observed relative to one with $g_{A}^{s}=0$.
High precision studies of Beyond-Standard-Model physics through accelerator-based neutrino oscillation experiments require a very accurate description of neutrino-nucleus cross sections in a broad energy region, going from quasielastic scattering up to deep inelastic scattering. In this work we focus on the following processes: quasielastic scattering, two-particle-two-hole excitations, and the excitation of the first (Delta) and second (Roper) resonances of the nucleon. The nuclear model is fully relativistic and includes both one- and two-body currents. We compare our results with recent T2K and MicroBooNE data on carbon and argon targets, and present predictions for DUNE kinematics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا