Do you want to publish a course? Click here

1S0 Proton and Neutron Superfluidity in beta-stable Neutron Star Matter

80   0   0.0 ( 0 )
 Added by Wei Zuo
 Publication date 2004
  fields
and research's language is English




Ask ChatGPT about the research

We investigate the effect of a microscopic three-body force on the proton and neutron superfluidity in the $^1S_0$ channel in $beta$-stable neutron star matter. It is found that the three-body force has only a small effect on the neutron $^1S_0$ pairing gap, but it suppresses strongly the proton $^1S_0$ superfluidity in $beta$-stable neutron star matter.



rate research

Read More

203 - Wenmei Guo , J. M. Dong , X. Shang 2018
The onset of 1S0 proton spin-singlet pairing in neutron-star matter is studied in the framework of the BCS theory including medium polarization effects. The strong three-body coupling of the diproton pairs with the dense neutron environment and the self-energy effects severely reduce the gap magnitude, so to reshape the scenario of the proton superfluid phase inside the star. The vertex corrections due to the medium polarization are attractive in all isospin-asymmetry range at low density and tend to favor the pairing in that channel. However quantitative estimates of their effect on the energy gap do not give significant changes. Implications of the new scenario on the role of pairing in neutron-star cooling is briefly discussed.
The existence of superfluidity of the neutron component in the core of a neutron star, associated specifically with triplet $P-$wave pairing, is currently an open question that is central to interpretation of the observed cooling curves and other neutron-star observables. Ab initio theoretical calculations aimed at resolving this issue face unique challenges in the relevant high-density domain, which reaches beyond the saturation density of symmetrical nuclear matter. These issues include uncertainties in the three-nucleon (3N) interaction and in the effects of strong short-range correlations -- and more generally of in-medium modification of nucleonic self-energies and interactions. A survey of existing solutions to the gap equations in the triplet channel shows that the separate or combined impacts of 3N forces, coupled channels, and mass renormalization range from moderate to strong to devastating, thus motivating a detailed analysis of the competing effects. In the present work we track the effects of the 3N force and in-medium modifications in the representative case of the $^3P_2$ channel, based on the Argonne V18 two-nucleon (2N) interaction supplemented by 3N interactions of the Urbana IX family. Sensitivity of the results to the input interaction is clearly demonstrated, while consistency issues arise with respect to the simultaneous treatment of 3N forces and in-medium effects. We consider this pilot study as the first step towards a systematic and comprehensive exploration of coupled-channel $^3P F_2$ pairing using a broad range of 2N and 3N interactions from the current generation of refined semi-phenomenological models and models derived from chiral effective field theory.
The self-energy effect on the neutron-proton (np) pairing gap is investigated up to the third order within the framework of the extend Bruecker-Hartree-Fock (BHF) approach combined with the BCS theory. The self-energy up to the second-order contribution turns out to reduce strongly the effective energy gap, while the emph{renormalization} term enhances it significantly. In addition, the effect of the three-body force on the np pairing gap is shown to be negligible. To connect the present results with the np pairing in finite nuclei, an effective density-dependent zero-range pairing force is established with the parameters calibrated to the microscopically calculated energy gap.
105 - U. Lombardo 2001
The superfluidity of neutron matter in the channel $^1 S_0$ is studied by taking into account the effect of the ground-state correlations in the self-energy. To this purpose the gap equation has been solved within the generalized Gorkov approach. A sizeable suppression of the energy gap is driven by the quasi-particle strength around the Fermi surface.
The rigorous treatment of proton localization phenomenon in asymmetric nuclear matter is presented. The solution of proton wave function and neutron background distribution is found by the use of the extended Thomas-Fermi approach. The minimum of energy is obtained in the Wigner- Seitz approximation of spherically symmetric cell. The analysis of three different nuclear models suggests that the proton localization is likely to take place in the interior of neutron star.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا