The 3 alpha orthogonality condition model using the Pauli-forbidden bound states of the Buck, Friedlich and Wheatly alpha alpha potential can yield a compact 3 alpha ground state with a large binding energy, in which a small admixture of the redundant components can never be eliminated.
The 3 alpha Faddeev equation using 2 alpha RGM kernel involves redundant components whose contribution to the total wave function completely cancels out. We propose a practical method to solve this Faddeev equation, by eliminating the admixture of such redundant components. A complete equivalence between the present Faddeev approach and a variational approach using the translationally invariant harmonic-oscillator basis is numerically shown with respect to the 3 alpha bound state corresponding to the ground state of 12C.
We carry out Faddeev calculations of three-alpha (3 alpha) and two-alpha plus Lambda (alpha alpha Lambda) systems, using two-cluster resonating-group method kernels. The input includes an effective two-nucleon force for the alpha alpha resonating-group method and a new effective Lambda N force for the Lambda alpha interaction. The latter force is a simple two-range Gaussian potential for each spin-singlet and triplet state, generated from the phase-shift behavior of the quark-model hyperon-nucleon interaction, fss2, by using an inversion method based on supersymmetric quantum mechanics. Owing to the exact treatment of the Pauli-forbidden states between the clusters, the present three-cluster Faddeev formalism can describe the mutually related, alpha alpha, 3 alpha and alpha alpha Lambda systems, in terms of a unique set of the baryon-baryon interactions. For the three-range Minnesota force which describes the alpha alpha phase shifts quite accurately, the ground-state and excitation energies of 9Be Lambda are reproduced within 100 - 200 keV accuracy.
Two different types of orthogonality condition models (OCM) are equivalently formulated in the Faddeev formalism. One is the OCM which uses pairwise orthogonality conditions for the relative motion of clusters, and the other is the one which uses the orthogonalizing pseudo-potential method. By constructing a redundancy-free T-matrix, one can exactly eliminate the redundant components of the total wave function for the harmonic-oscillator Pauli-forbidden states, without introducing any limiting procedure. As an example, a three-alpha-particle model interacting via the deep alpha alpha potential by Buck, Friedrich and Wheatley is investigated.
{bf Background} Deuteron induced reactions are widely used to probe nuclear structure and astrophysical information. Those (d,p) reactions may be viewed as three-body reactions and described with Faddeev techniques. {bf Purpose} Faddeev-AGS equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. However, it needs to be demonstrated that observables calculated based on separable interactions agree exactly with those based on nonseparable forces. {bf Methods} Momentum space AGS equations are solved with separable and nonseparable forces as coupled integral equations. {bf Results} Deuteron-alpha scattering is calculated via momentum space AGS equations using the CD-Bonn neutron-proton force and a Woods-Saxon type neutron(proton)-$^4$He force, for which the Pauli-forbidden S-wave bound state is projected out. Elastic as well as breakup observables are calculated and compared to results in which the interactions in the two-body sub-systems are represented by separable interactions derived in the Ernst-Shakin-Thaler (EST) framework. {bf Conclusions} We find that the calculations based on the separable representation of the interactions and the original interactions give results that are in excellent agreement. Specifically, integrated cross sections and angular distributions for elastic scattering agree within $approx$ 1%, which is well below typical experimental errors. In addition, the five-fold differential cross sections corresponding to breakup of the deuteron agree extremely well.
Recently it has been pointed out that the Faddeev-Niemi equations that correspond to the Yang-Mills equations of motion for a decomposed gauge field, can have solutions that obey the standard Yang-Mills equations with a source term. Here we present a general class of such gauge field configurations.