No Arabic abstract
We carry out Faddeev calculations of three-alpha (3 alpha) and two-alpha plus Lambda (alpha alpha Lambda) systems, using two-cluster resonating-group method kernels. The input includes an effective two-nucleon force for the alpha alpha resonating-group method and a new effective Lambda N force for the Lambda alpha interaction. The latter force is a simple two-range Gaussian potential for each spin-singlet and triplet state, generated from the phase-shift behavior of the quark-model hyperon-nucleon interaction, fss2, by using an inversion method based on supersymmetric quantum mechanics. Owing to the exact treatment of the Pauli-forbidden states between the clusters, the present three-cluster Faddeev formalism can describe the mutually related, alpha alpha, 3 alpha and alpha alpha Lambda systems, in terms of a unique set of the baryon-baryon interactions. For the three-range Minnesota force which describes the alpha alpha phase shifts quite accurately, the ground-state and excitation energies of 9Be Lambda are reproduced within 100 - 200 keV accuracy.
The 3 alpha Faddeev equation using 2 alpha RGM kernel involves redundant components whose contribution to the total wave function completely cancels out. We propose a practical method to solve this Faddeev equation, by eliminating the admixture of such redundant components. A complete equivalence between the present Faddeev approach and a variational approach using the translationally invariant harmonic-oscillator basis is numerically shown with respect to the 3 alpha bound state corresponding to the ground state of 12C.
We calculate n alpha phase-shifts and scattering observables in the resonating-group method, using the nuclear-matter G-matrix of an SU_6 quark-model NN interaction. The G-matrix is generated in the recent energy-independent procedure of the quark-model NN interaction with the continuous prescription for intermediate spectra, by assuming an appropriate Fermi momentum k_F=1.2 fm^-1. The n alpha RGM interaction kernels are evaluated with explicit treatments of the nonlocality and momentum dependence of partial-wave G-matrix components. The momentum dependence of the G-matrix components is different for each of the nucleon-exchange and interaction types. Without introducing any artificial parameters except for k_F, the central and spin-orbit components of the n alpha Born kernel are found to have reasonable strengths under the assumption of a rigid translationally invariant shell-model wave function of the alpha-cluster. The characteristic behaviors of three different exchange terms, corresponding to knockout, heavy-particle pickup and nucleon-rearrangement processes, are essentially the same between the case of previous local effective NN forces and the case of nonlocal G-matrix NN interactions.
New concept of clustering is discussed in $Lambda$ hypernuclei using a new-type microscopic cluster model wave function, which has a structure that constituent clusters are confined in a container, whose size is a variational parameter and which we refer to as Hyper-Tohsaki-Horiuchi-Schuck-Ropke (Hyper-THSR) wave function. By using the Hyper-THSR wave function, $2alpha + Lambda$ cluster structure in ${^{9}_Lambda{rm Be}}$ is investigated. We show that full microscopic solutions in the $2alpha + Lambda$ cluster system, which are given as $2alpha + Lambda$ Brink-GCM wave functions, are almost perfectly reproduced by the single configurations of the Hyper-THSR wave function. The squared overlaps between the both wave functions are calculated to be $99.5$%, $99.4$%, and $97.7$% for $J^pi=0^+$, $2^+$, and $4^+$ states, respectively. We also simulate the structural change by adding the $Lambda$ particle, by varying the $Lambda N$ interaction artificially. As the increase of the $Lambda N$ interaction, the $Lambda$ particle gets to move more deeply inside the core and invokes strongly the spatial core shrinkage, and accordingly distinct localized $2alpha$ clusters appear in the nucleonic intrinsic density, though in ${^{8}{rm Be}}$ rather gaslike $2alpha$-cluster structure is shown. The origin of the localization is associated with the strong effect of Pauli principle. We conclude that the container picture of the $2alpha$ and $Lambda$ clusters is essential in understanding the cluster structure in ${^{9}_Lambda{rm Be}}$, in which the very compact spatial localization of clusters is shown in the density distribution.
We calculate Lambda alpha, Sigma alpha and Xi alpha potentials from the nuclear-matter G-matrices of the SU6 quark-model baryon-baryon interaction. The alpha-cluster wave function is assumed to be a simple harmonic-oscillator shell-model wave function. A new method is proposed to derive the direct and knock-on terms of the interaction Born kernel from the hyperon-nucleon G-matrices, with explicit treatments of the nonlocality and the center-of-mass motion between the hyperon and alpha. We find that the SU6 quark-model baryon-baryon interactions, FSS and fss2, yield a reasonable bound-state energy for 5 He Lambda, -3.18 -- -3.62 MeV, in spite of the fact that they give relatively large depths for the Lambda single-particle potentials, 46 -- 48 MeV, in symmetric nuclear matter. An equivalent local potential derived from the Wigner transform of the nonlocal Lambda alpha kernel shows a strong energy dependence for the incident Lambda-particle, indicating the importance of the strangeness-exchange process in the original hyperon-nucleon interaction. The Sigma alpha and Xi alpha potentials are repulsive with the attractive isospin I=1/2 (Sigma alpha) and I=0 (Xi alpha) components and the repulsive I=3/2 (Sigma alpha) and I=1 (Xi alpha) components.
The 3 alpha orthogonality condition model using the Pauli-forbidden bound states of the Buck, Friedlich and Wheatly alpha alpha potential can yield a compact 3 alpha ground state with a large binding energy, in which a small admixture of the redundant components can never be eliminated.