Do you want to publish a course? Click here

Predictions from Microscopic Models on Particle Correlations at RHIC

63   0   0.0 ( 0 )
 Added by Sven Soff
 Publication date 2003
  fields
and research's language is English
 Authors Sven Soff




Ask ChatGPT about the research

We review the recent developments on microscopic transport calculations for two-particle correlations at low relative momenta in ultrarelativistic heavy ion collisions at RHIC.



rate research

Read More

67 - Sven Soff 2002
We present calculations of two-pion and two-kaon correlation functions in relativistic heavy ion collisions from a relativistic transport model that includes explicitly a first-order phase transition from a thermalized quark-gluon plasma to a hadron gas. We compare the obtained correlation radii with recent data from RHIC. The predicted R_side radii agree with data while the R_out and R_long radii are overestimated. We also address the impact of in-medium modifications, for example, a broadening of the rho-meson, on the correlation radii. In particular, the longitudinal correlation radius R_long is reduced, improving the comparison to data.
Correlations of different azimuthal flow harmonics $v_n$ and symmetry planes $Psi_n$ can add constraints to theoretical models, and probe aspects of the system that are independent of the traditional single-harmonic measurements. Using NeXSPheRIO, a hydrodynamical model which has accurately reproduced a large set of single-harmonic correlations at RHIC, we make predictions of these new observables for 200 A GeV Au+Au Collisions, providing an important baseline for comparison to correlations of flow harmonics, which contain non-trivial information about the initial state. We also point out how to properly compare theoretical calculations to measurements using wide centrality bins and non-trivial event weighting.
70 - L.V. Bravina 2001
The relaxation of hot nuclear matter to an equilibrated state in the central zone of heavy-ion collisions at energies from AGS to RHIC is studied within the microscopic UrQMD model. It is found that the system reaches the (quasi)equilibrium stage for the period of 10-15 fm/$c$. Within this time the matter in the cell expands nearly isentropically with the entropy to baryon ratio $S/A = 150 - 170$. Thermodynamic characteristics of the system at AGS and at SPS energies at the endpoints of this stage are very close to the parameters of chemical and thermal freeze-out extracted from the thermal fit to experimental data. Predictions are made for the full RHIC energy $sqrt{s} = 200$ AGeV. The formation of a resonance-rich state at RHIC energies is discussed.
We present measurements of three-particle correlations for various harmonics in Au+Au collisions at energies ranging from $sqrt{s_{{rm NN}}}=7.7$ to 200 GeV using the STAR detector. The quantity $langlecos(mphi_1+nphi_2-(m+n)phi_3)rangle$ is evaluated as a function of $sqrt{s_{{rm NN}}}$, collision centrality, transverse momentum, $p_T$, pseudo-rapidity difference, $Deltaeta$, and harmonics ($m$ and $n$). These data provide detailed information on global event properties like the three-dimensional structure of the initial overlap region, the expansion dynamics of the matter produced in the collisions, and the transport properties of the medium. A strong dependence on $Deltaeta$ is observed for most harmonic combinations consistent with breaking of longitudinal boost invariance. Data reveal changes with energy in the two-particle correlation functions relative to the second-harmonic event-plane and provide ways to constrain models of heavy-ion collisions over a wide range of collision energies.
Squeezed correlations of particle-antiparticle pairs, also called Back-to-Back Correlations, are predicted to appear if the hadron masses are modified in the hot and dense hadronic medium formed in high energy nucleus-nucleus collisions. Although well-established theoretically, the squeezed-particle correlations have not yet been searched for experimentally in high energy hadronic or heavy ion collisions, clearly requiring optimized forms to experimentally search for this effect. Within a non-relativistic treatment developed earlier we show that one promising way to search for the BBC signal is to look into the squeezed correlation function of pairs of phi-mesons at RHIC energies, plotted in terms of the average momentum of the pair, K12=(k1+k2)/2. This variables modulus, 2|K12|, is the non-relativistic limit of the variable Q_bbc, introduced herewith. The squeezing effects on the HBT correlation function are also discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا