Do you want to publish a course? Click here

Leakage Effect on J/psi Pt Distributions in Different Centrality Bins for Pb-Pb Collisions at E/A=160 GeV

65   0   0.0 ( 0 )
 Added by Xianglei Zhu
 Publication date 2003
  fields
and research's language is English




Ask ChatGPT about the research

A transport approach including a leakage effect for J/psis in the transverse phase space is used to calculate the ratios between the J/psi transverse momentum distributions in several centrality bins for Pb-Pb collisions at E/A = 160 GeV. From the comparison with the CERN-SPS data, where the centrality is characterized by the transverse energy Et, the leakage effect is extremely important in the region of high transverse momentum and high transverse energy, and both the threshold and the comover models can describe the ratio well for all centrality bins except the most central one (Et < 100 GeV), for which the comover model calculation is considerably better than the threshold one.



rate research

Read More

By generalizing the statistical model for particle production to the spin degree of freedom of initially produced J/psi, we study the spin projection J_y of J/psi perpendicular to the reaction plane in peripheral heavy ion collisions at the LHC energy that leads to a strong, albeit of short duration, magnetic field. We find that for J/psis produced directly from charm and anticharm quarks in the color singlet state, like that in the Color-Singlet Model, their yield in the presence of the magnetic field is larger for J_y=0 than for J_y=1 or -1. This leads to a spin asymmetry of finally produced J/psi even after including their final-state scattering in the produced quark-gluon plasma.
150 - F. Prino 2009
The J/$psi$ azimuthal distribution relative to the reaction plane has been measured by the NA50 experiment in Pb-Pb collisions at 158 GeV/nucleon. Various physical mechanisms related to charmonium dissociation in the medium created in the heavy ion collision are expected to introduce an anisotropy in the azimuthal distribution of the observed J/$psi$ mesons at SPS energies. Hence, the measurement of J/$psi$ elliptic anisotropy, quantified by the Fourier coefficient v$_2$ of the J/$psi$ azimuthal distribution relative to the reaction plane, is an important tool to constrain theoretical models aimed at explaining the anomalous J/$psi$ suppression observed in Pb-Pb collisions. We present the measured J/$psi$ yields in different bins of azimuthal angle relative to the reaction plane, as well as the resulting values of the Fourier coefficient v$_{2}$ as a function of the collision centrality and of the J/$psi$ transverse momentum. The reaction plane has been estimated from the azimuthal distribution of the neutral transverse energy detected in an electromagnetic calorimeter. The analysis has been performed on a data sample of about 100 000 events, distributed in five centrality or p$_{rm T}$ sub-samples. The extracted v$_{2}$ values are significantly larger than zero for non-central collisions and are seen to increase with p$_{rm T}$.
There is event by event geometric as well as quantum fluctuations in the initial condition of heavy-ion collisions. The standard technique of analysing heavy-ion collisions in bins of centrality obtained from final state multiplicity averages out the various initial configurations and thus restricts the study to only a limited range of initial conditions. In this paper, we propose an additional binning in terms of total spectator neutrons in an event. This offers us a key control parameter to probe events with broader range of initial conditions providing us an opportunity to peep into events with rarer initial conditions which otherwise get masked when analysed by centrality binning alone. We find that the inclusion of spectator binning allows one to vary $varepsilon_2$ and $varepsilon_3$ independently. We observe that the standard scaling relation between $displaystyle{v_2/varepsilon_2}$ and $frac{1}{S}frac{dN_{text{ch}}}{deta}$ exhibited by centrality bins is broken by the spectator neutron bins. However, the acoustic scaling relation between $displaystyle{lnleft( v_n/varepsilon_nright)}$ and transverse system size holds for both centrality as well as spectator bins for central to mid-central collisions. The introduction of the spectator binning allows us to tune over a wide range viscosity driven effects for events with varying initial states but similar final state multiplicity.
The production at central rapidity of K0s, Lambda, Xi and Omega particles in Pb-Pb collisions at 158 A GeV/c has been measured by the NA57 experiment over a centrality range corresponding to the most central 53% of the inelastic Pb-Pb cross section. In this paper we present the rapidity distribution of each particle in the central rapidity unit as a function of the event centrality. The distributions are analyzed based on hydrodynamical models of the collisions.
163 - T. Anticic , B. Baatar , D. Barna 2010
The yields of (anti-)protons were measured by the NA49 Collaboration in centrality selected Pb+Pb collisions at 40A GeV and 158A GeV. Particle identification was obtained in the laboratory momentum range from 5 to 63 GeV/c by the measurement of the energy loss dE/dx in the TPC detector gas. The corresponding rapidity coverage extends 1.6 units from mid-rapidity into the forward hemisphere. Transverse mass spectra, the rapidity dependences of the average transverse mass, and rapidity density distributions were studied as a function of collision centrality. The values of the average transverse mass as well as the midrapidity yields of protons when normalized to the number of wounded nucleons show only modest centrality dependences. In contrast, the shape of the rapidity distribution changes significantly with collision centrality, especially at 40A GeV. The experimental results are compared to calculations of the HSD and UrQMD transport models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا