Do you want to publish a course? Click here

Odd-Even Staggering in Octupole Bands of Actinides and Rare Earths: Systematics of Beat Patterns

106   0   0.0 ( 0 )
 Added by Dennis Bonatsos
 Publication date 2001
  fields
and research's language is English




Ask ChatGPT about the research

``Beat patterns are shown to appear in the octupole bands of several actinides and rare earths, their appearance being independent from the formula used in order to isolate and demonstrate them. It is shown that the recent formalism, making use of discrete approximations to derivatives of the transition energies (or of the energy levels) gives results consistent with the traditional formulae. In both regions it is seen that the first vanishing of the staggering occurs at higher values of the angular momentum I in nuclei exhibiting higher staggering at low I. Since these nuclei happen to be good rotators, the observed slow decrease of the amplitude of the staggering with increasing I is in good agreement with the parameter independent predictions of the su(3) (rotational) limit of several algebraic models. In the actinides it has been found that within each series of isotopes the odd-even staggering exhibits minima at N=134 and N=146, while a local maximum is shown at N=142, these findings being in agreement with the recent suggestion of a secondary maximum of octupole deformation around N=146.



rate research

Read More

A unified theoretical model reproducing charge radii of known atomic nuclei plays an essential role to make extrapolations in the regions of unknown nuclear size. Recently developed new ansatz which phenomenally takes into account the neutron-proton short-range correlations (np-SRCs) can describe the discontinuity properties and odd-even staggering (OES) effect of charge radii along isotopic chains remarkably well. In this work, we further review the modified rms charge radii formula in the framework of relativistic mean field (RMF) theory. The charge radii are calculated along various isotopic chains that include the nuclei featuring the $N=50$ and $82$ magic shells. Our results suggest that RMF with and without considering correction term give almost similar trend of nuclear size for some isotopic chains with open proton shell, especially the shrink phenomena of charge radii at strong neutron closed shells and the OES behaviors. This suggests that the np-SRCs has almost no influence for some nuclei due to the strong coupling between different levels around Fermi surface. The weakening OES behavior of nuclear charge radii is observed generally at completely filled neutron shells and this may be proposed as a signature of magic indicator.
The FRS-ESR facility at GSI provides unique conditions for precision measurements of large areas on the nuclear mass surface in a single experiment. Values for masses of 604 neutron-deficient nuclides (30<=Z<=92) were obtained with a typical uncertainty of 30 microunits. The masses of 114 nuclides were determined for the first time. The odd-even staggering (OES) of nuclear masses was systematically investigated for isotopic chains between the proton shell closures at Z=50 and Z=82. The results were compared with predictions of modern nuclear models. The comparison revealed that the measured trend of OES is not reproduced by the theories fitted to masses only. The spectral pairing gaps extracted from models adjusted to both masses, and density related observables of nuclei agree better with the experimental data.
A systematic analysis of low-lying quadrupole and octupole collective states is presented, based on the microscopic energy density functional framework. By mapping the deformation constrained self-consistent axially symmetric mean-field energy surfaces onto the equivalent Hamiltonian of the $sdf$ interacting boson model (IBM), that is, onto the energy expectation value in the boson condensate state, the Hamiltonian parameters are determined. The study is based on the global relativistic energy density functional DD-PC1. The resulting IBM Hamiltonian is used to calculate excitation spectra and transition rates for the positive- and negative-parity collective states in four isotopic chains characteristic for two regions of octupole deformation and collectivity: Th, Ra, Sm and Ba. Consistent with the empirical trend, the microscopic calculation based on the systematics of $beta_{2}$-$beta_{3}$ energy maps, the resulting low-lying negative-parity bands and transition rates show evidence of a shape transition between stable octupole deformation and octupole vibrations characteristic for $beta_{3}$-soft potentials.
The evolution of quadrupole and octupole collectivity and their coupling is investigated in a series of even-even isotopes of the actinide Ra, Th, U, Pu, Cm, and Cf with neutron number in the interval $130leqslant Nleqslant 150$. The Hartree-Fock-Bogoliubov approximation, based on the parametrization D1M of the Gogny energy density functional, is employed to generate potential energy surfaces depending upon the axially-symmetric quadrupole and octupole shape degrees of freedom. The mean-field energy surface is then mapped onto the expectation value of the $sdf$ interacting-boson-model Hamiltonian in the boson condensate state as to determine the strength parameters of the boson Hamiltonian. Spectroscopic properties related to the octupole degree of freedom are produced by diagonalizing the mapped Hamiltonian. Calculated low-energy negative-parity spectra, $B(E3;3^{-}_{1}to 0^{+}_{1})$ reduced transition rates, and effective octupole deformation suggest that the transition from nearly spherical to stable octupole-deformed, and to octupole vibrational states occurs systematically in the actinide region.
187 - Y. Urata , K. Hagino , 2017
We discuss the role of pairing anti-halo effect in the observed odd-even staggering in reaction cross sections for $^{30,31,32}$Ne and $^{36,37,38}$Mg isotopes by taking into account the ground state deformation of these nuclei. To this end, we construct the ground state density for the $^{30,31}$Ne and $^{36,37}$Mg nuclei based on a deformed Woods-Saxon potential, while for the $^{32}$Ne and $^{38}$Mg nuclei we also take into account the pairing correlation using the Hartree-Fock-Bogoliubov method. We demonstrate that, when the one-neutron separation energy is small for the odd-mass nuclei, a significant odd-even staggering still appears even with finite deformation, although the degree of staggering is somewhat reduced compared to the spherical case. This implies that the pairing anti-halo effect in general plays an important role in generating the odd-even staggering in reaction cross sections for weakly bound nuclei.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا