Do you want to publish a course? Click here

Neutrons from multiplicity-selected Au-Au collisions at 150, 250, 400, and 650 AMeV

44   0   0.0 ( 0 )
 Added by Charles Gale
 Publication date 1995
  fields
and research's language is English




Ask ChatGPT about the research

We measured neutron triple-differential cross sections from multiplicity-selected Au-Au collisions at 150, 250, 400, and 650 AMeV. The reaction plane for each collision was estimated from the summed transverse velocity vector of the charged fragments emitted in the collision. We examined the azimuthal distribution of the triple-differential cross sections as a function of the polar angle and the neutron rapidity. We extracted the average in--plane transverse momentum $langle P_xrangle$ and the normalized observable $langle P_x/P_perprangle$, where $P_perp$ is the neutron transverse momentum, as a function of the neutron center-of-mass rapidity, and we examined the dependence of these observables on beam energy. These collective flow observables for neutrons, which are consistent with those of protons plus bound nucleons from the Plastic Ball Group, agree with the Boltzmann--Uehling--Uhlenbeck (BUU) calculations with a momentum--dependent interaction. Also, we calculated the polar-angle-integrated maximum azimuthal anisotropy ratio R from the value of $langle P_x/P_perprangle$.



rate research

Read More

133 - Krzysztof Wozniak 2007
In the PHOBOS experiment, charged particles are measured in almost the full solid angle. This enables the study of fluctuations and correlations in the particle production over a very wide kinematic range. In this paper, we show results of a direct search for fluctuations identified by an unusual shape of the pseudorapidity distribution. In addition, we use analysis of correlations of the multiplicity in similar pseudorapidity bins, placed symmetrically in the forward and backward hemispheres, to test the hypothesis of production of particles in clusters.
96 - M. M. Htun 1998
Triple-differential cross sections for neutrons from high-multiplicity La-La collisions at 250 and 400 MeV per nucleon and Nb-Nb collisions at 400 MeV per nucleon were measured at several polar angles as a function of the azimuthal angle with respect to the reaction plane of the collision. The reaction plane was determined by a transverse-velocity method with the capability of identifying charged-particles with Z=1, Z=2, and Z > 2. The flow of neutrons was extracted from the slope at mid-rapidity of the curve of the average in-plane momentum vs the center-of-mass rapidity. The squeeze-out of the participant neutrons was observed in a direction normal to the reaction plane in the normalized momentum coordinates in the center-of-mass system. Experimental results of the neutron squeeze-out were compared with BUU calculations. The polar-angle dependence of the maximum azimuthal anisotropy ratio $r(theta)$ was found to be insensitive to the mass of the colliding nuclei and the beam energy. Comparison of the observed polar-angle dependence of the maximum azimuthal anisotropy ratio $r(theta)$ with BUU calculations for free neutrons revealed that $r(theta)$ is insensitive also to the incompressibility modulus in the nuclear equation of state.
Using the quantum molecular dynamics approach, we analyze the results of the recent INDRA Au+Au experiments at GSI in the energy range between 60 AMeV and 150 AMeV. It turns out that in this energy region the transition toward a participant-spectator scenario takes place. The large Au+Au system displays in the simulations as in the experiment simultaneously dynamical and statistical behavior which we analyze in detail: The composition of fragments close to midrapidity follows statistical laws and the system shows bi-modality, i.e. a sudden transition between different fragmentation pattern as a function of the centrality as expected for a phase transition. The fragment spectra at small and large rapidities, on the other hand, are determined by dynamics and the system as a whole does not come to equilibrium, an observation which is confirmed by FOPI experiments for the same system.
Collisions between prolate uranium nuclei are used to study how particle production and azimuthal anisotropies depend on initial geometry in heavy-ion collisions. We report the two- and four-particle cumulants, $v_2{2}$ and $v_2{4}$, for charged hadrons from U+U collisions at $sqrt{s_{rm NN}}$ = 193 GeV and Au+Au collisions at $sqrt{s_{rm NN}}$ = 200 GeV. Nearly fully overlapping collisions are selected based on the amount of energy deposited by spectators in the STAR Zero Degree Calorimeters (ZDCs). Within this sample, the observed dependence of $v_2{2}$ on multiplicity demonstrates that ZDC information combined with multiplicity can preferentially select different overlap configurations in U+U collisions. An initial-state model with gluon saturation describes the slope of $v_2{2}$ as a function of multiplicity in central collisions better than one based on Glauber with a two-component multiplicity model.
Identified charged particle spectra of $pi^{pm}$, $K^{pm}$, $p$ and $pbar$ at mid-rapidity ($|y|<0.1$) measured by the $dedx$ method in the STAR-TPC are reported for $pp$ and d+Au collisions at $snn = 200$ GeV and for Au+Au collisions at 62.4 GeV, 130 GeV, and 200 GeV. ... [Shortened for arXiv list. Full abstract in manuscript.]
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا