Do you want to publish a course? Click here

Transition from participant to spectator fragmentation in Au+Au reaction between 60 AMeV and 150 AMeV

48   0   0.0 ( 0 )
 Added by Joerg Aichelin
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

Using the quantum molecular dynamics approach, we analyze the results of the recent INDRA Au+Au experiments at GSI in the energy range between 60 AMeV and 150 AMeV. It turns out that in this energy region the transition toward a participant-spectator scenario takes place. The large Au+Au system displays in the simulations as in the experiment simultaneously dynamical and statistical behavior which we analyze in detail: The composition of fragments close to midrapidity follows statistical laws and the system shows bi-modality, i.e. a sudden transition between different fragmentation pattern as a function of the centrality as expected for a phase transition. The fragment spectra at small and large rapidities, on the other hand, are determined by dynamics and the system as a whole does not come to equilibrium, an observation which is confirmed by FOPI experiments for the same system.



rate research

Read More

We measured neutron triple-differential cross sections from multiplicity-selected Au-Au collisions at 150, 250, 400, and 650 AMeV. The reaction plane for each collision was estimated from the summed transverse velocity vector of the charged fragments emitted in the collision. We examined the azimuthal distribution of the triple-differential cross sections as a function of the polar angle and the neutron rapidity. We extracted the average in--plane transverse momentum $langle P_xrangle$ and the normalized observable $langle P_x/P_perprangle$, where $P_perp$ is the neutron transverse momentum, as a function of the neutron center-of-mass rapidity, and we examined the dependence of these observables on beam energy. These collective flow observables for neutrons, which are consistent with those of protons plus bound nucleons from the Plastic Ball Group, agree with the Boltzmann--Uehling--Uhlenbeck (BUU) calculations with a momentum--dependent interaction. Also, we calculated the polar-angle-integrated maximum azimuthal anisotropy ratio R from the value of $langle P_x/P_perprangle$.
Spectator fragments resulting from relativistic heavy ion collisions, consisting of single protons and neutrons along with groups of stable nuclear fragments up to Nitrogen (Z=7), are measured in PHOBOS. These fragments are observed in Au+Au (sqrt(sNN)=19.6 GeV) and Cu+Cu (22.4 GeV) collisions at high pseudorapidity ($eta$). The dominant multiply-charged fragment is the tightly bound Helium ($alpha$), with Lithium, Beryllium, and Boron all clearly seen as a function of collision centrality and pseudorapidity. We observe that in Cu+Cu collisions, it becomes much more favorable for the $alpha$ fragments to be released than Lithium. The yields of fragments approximately scale with the number of spectator nucleons, independent of the colliding ion. The shapes of the pseudorapidity distributions of fragments indicate that the average deflection of the fragments away from the beam direction increases for more central collisions. A detailed comparison of the shapes for $alpha$ and Lithium fragments indicates that the centrality dependence of the deflections favors a scaling with the number of participants in the collision.
We have measured production yields and longitudinal momentum distributions of projectile-like fragments in the reaction 129Xe + 27Al at an energy of Elab=790 AMeV. Production cross sections higher than expected from systematics were observed for nuclei in the neutron-deficient tails of the isotopic distributions. A comparison with previously measured data from the fragmentation of 136Xe ions shows that the production yields strongly depend on the neutron excess of the projectile with respect to the line of beta-stability. The momentum distributions exhibit a dependence on the fragment neutron-to-proton ratio in isobaric chains, which was not expected from systematics so far. This can be interpreted by a higher excitation of the projectile during the formation of neutron-deficient fragments.
180 - J. Lukasik , S. Hudan , F. Lavaud 2002
Invariant transverse-velocity spectra of intermediate-mass fragments were measured with the 4-pi multi-detector system INDRA for collisions of Au on Au at incident energies between 40 and 150 MeV per nucleon. Their scaling properties as a function of incident energy and atomic number Z are used to distinguish and characterize the emissions in (i) peripheral collisions at the projectile and target rapidities, and in (ii) central and (iii) peripheral collisions near mid-rapidity. The importance of dynamical effects is evident in all three cases and their origin is discussed.
The chiral magnetic effect (CME) refers to charge separation along a strong magnetic field due to imbalanced chirality of quarks in local parity and charge-parity violating domains in quantum chromodynamics. The experimental measurement of the charge separation is made difficult by the presence of a major background from elliptic azimuthal anisotropy. This background and the CME signal have different sensitivities to the spectator and participant planes, and could thus be determined by measurements with respect to these planes. We report such measurements in Au+Au collisions at a nucleon-nucleon center-of-mass energy of 200 GeV at the Relativistic Heavy-Ion Collider. It is found that the charge separation, with the flow background removed, is consistent with zero in peripheral (large impact parameter) collisions. Some indication of finite CME signals is seen with a significance of 1--3 standard deviations in mid-central (intermediate impact parameter) collisions. Significant residual background effects may, however, still be present.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا