No Arabic abstract
A study of the 7Li(9Be,4He 10Be)2H reaction at E{beam}=70 MeV has been performed using resonant particle spectroscopy techniques and provides the first measurements of alpha-decaying states in 14C. Excited states are observed at 14.7, 15.5, 16.4, 18.5, 19.8, 20.6, 21.4, 22.4 and 24.0 MeV. The experimental technique was able to resolve decays to the various particle bound states in 10Be, and provides evidence for the preferential decay of the high energy excited states into states in 10Be at ~6 MeV. The decay processes are used to indicate the possible cluster structure of the 14C excited states.
The structure of the nucleus 25F was investigated through in-beam {gamma}-ray spectroscopy of the fragmentation of 26Ne and 27,28Na ion beams. Based on the particle-{gamma} and particle-{gamma}{gamma} coincidence data, a level scheme was constructed and compared with shell model and coupled-cluster calculations. Some of the observed states were interpreted as quasi single-particle states built on top of the closed-shell nucleus 24O, while the others were described as states arising from coupling of a single proton to the 2+ core excitation of 24O.
Electromagnetic transitions from deformed structures based on $alpha$ configurations or on heavier clusters are discussed, drawing the link between multiparticle-multihole excited bands and cluster structures. Enhanced E2 and E1 transitions are reviewed in the light nuclei, $^8$Be, $^{10}$Be, $^{12}$C, $^{16}$O, $^{18}$O and heavier ones like $^{212}$Po. Connections between cluster structures and superdeformed configurations in $^{36}$Ar and $^{40}$Ca are discussed. What the cluster states based on heavier substructures like $^{12}$C and $^{16}$O are concerned, recent results on the resonant radiative capture reaction $^{12}$C($^{16}$O,$gamma$)$^{28}$Si are presented, in particular the strong decay mode involving the feeding of low-lying $^{28}$Si 1$^+$ and 2$^+$ T=1 states by enhanced M1 isovector transitions.
Excited states in $^{14}$O have been investigated both experimentally and theoretically. Experimentally, these states were produced via neutron-knockout reactions with a fast $^{15}$O beam and the invariant-mass technique was employed to isolate the 1$p$ and 2$p$ decay channels and determine their branching ratios. The spectrum of excited states was also calculated with the Shell Model Embedded in the Continuum that treats bound and scattering states in a unified model. By comparing energies, widths and decay branching patterns, spin and parity assignments for all experimentally observed levels below 8 MeV are made. This includes the location of the second 2$^{+}$ state that we find is in near degeneracy with the third 0$^{+}$ state. An interesting case of sequential 2$p$ decay through a pair of degenerate $^{13}$N excited states with opposite parities was found where the interference between the two sequential decay pathways produces an unusual relative-angle distribution between the emitted protons.
It is a well-known fact that a cluster of nucleons can be formed in the interior of an atomic nucleus, and such clusters may occupy molecular-like orbitals, showing characteristics similar to normal molecules consisting of atoms. Chemical molecules having a linear alignment are commonly seen in nature, such as carbon dioxide. A similar linear alignment of the nuclear clusters, referred to as linear-chain cluster state (LCCS), has been studied since the 1950s, however, up to now there is no clear experimental evidence demonstrating the existence of such a state. Recently, it was proposed that an excess of neutrons may offer just such a stabilizing mechanism, revitalizing interest in the nuclear LCCS, specifically with predictions for their emergence in neutron-rich carbon isotopes. Here we present the experimental observation of {alpha}-cluster states in the radioactive 14C nucleus. Using the 10Be+{alpha} resonant scattering method with a radioactive beam, we observed a series of levels which completely agree with theoretically predicted levels having an explicit linear-chain cluster configuration. We regard this as the first strong indication of the linear-chain clustered nucleus.
Studies of the 16O(9Be,alpha7Be)14C and 7Li(9Be,alpha7Li)5He reactions at E{beam}=70 MeV have been performed using resonant particle spectroscopy techniques. The 11C excited states decaying into alpha+7Be(gs) are observed at 8.65, 9.85, 10.7 and 12.1 MeV as well as possible states at 12.6 and 13.4 MeV. This result is the first observation of alpha-decay for excited states above 9 MeV. The alpha+7Li(gs) decay of 11B excited states at 9.2, 10.3, 10.55, 11.2, (11.4), 11.8, 12.5,(13.0), 13.1, (14.0), 14.35, (17.4) and (18.6) MeV is observed. The decay processes are used to indicate the possible three-centre 2alpha+3He(3H) cluster structure of observed states. Two rotational bands corresponding to very deformed structures are suggested for the positive-parity states. Excitations of some observed T=1/2 resonances coincide with the energies of T=3/2 states which are the isobaric analogs of the lowest 11Be states. Some of these states may have mixed isospin.