No Arabic abstract
The structure of the nucleus 25F was investigated through in-beam {gamma}-ray spectroscopy of the fragmentation of 26Ne and 27,28Na ion beams. Based on the particle-{gamma} and particle-{gamma}{gamma} coincidence data, a level scheme was constructed and compared with shell model and coupled-cluster calculations. Some of the observed states were interpreted as quasi single-particle states built on top of the closed-shell nucleus 24O, while the others were described as states arising from coupling of a single proton to the 2+ core excitation of 24O.
Vector analyzing power for the proton-6He elastic scattering at 71 MeV/nucleon has been measured for the first time, with a newly developed polarized proton solid target working at low magnetic field of 0.09 T. The results are found to be incompatible with a t-matrix folding model prediction. Comparisons of the data with g-matrix folding analyses clearly show that the vector analyzing power is sensitive to the nuclear structure model used in the reaction analysis. The alpha-core distribution in 6He is suggested to be a possible key to understand the nuclear structure sensitivity.
Medium-spin excited states of the neutron-rich nucleus $^{87}$Br were observed and studied for the first time. They were populated in fission of $^{235}$U induced by the cold-neutron beam of the PF1B facility of the Institut Laue-Langevin, Grenoble. The measurement of $gamma$ radiation following fission has been performed using the EXILL array of Ge detectors. The observed level scheme was compared with results of large valence space shell model calculations. The medium-spin level scheme consists of three band-like structures, which can be understood as bands built on the ${pi}f_{5/2}$, ${pi}(p_{3/2}+f_{5/2})$ and ${pi}g_{9/2}$ configurations. The behavior of the observed ${pi}g_{9/2}$ band at high spins shows a considerable deviation from the shell model predictions. This deviation in this band is probably the result of an increased collectivity, which can be understood assuming that the ${pi}g_{9/2}$ high-$it j$ proton polarizes the core.
High-resolution gamma-ray spectroscopy of 18N is performed with the Advanced GAmma Tracking Array AGATA, following deep-inelastic processes induced by an 18O beam on a 181Ta target. Six states are newly identified, which together with the three known excitations exhaust all negative-parity excited states expected in 18N below the neutron threshold. Spin and parities are proposed for all located states on the basis of decay branchings and comparison with large-scale shell-model calculations performed in the p-sd space, with the YSOX interaction. Of particular interest is the location of the 0^-_1 and 1^-_2 excitations, which provide strong constrains for cross-shell p-sd matrix elements based on realistic interactions, and help to simultaneously reproduce the ground and first-excited states in 16N and 18N, for the first time. Understanding the 18N structure may also have significant impact on neutron-capture cross-section calculations in r-process modeling including light neutron-rich nuclei.
Recent experiments studying the meson-nucleus interaction to extract meson-nucleus potentials are reviewed. The real part of the potentials quantifies whether the interaction is attractive or repulsive while the imaginary part describes the meson absorption in nuclei. The review is focused on mesons which are sufficiently long-lived to potentially form meson-nucleus quasi-bound states. The presentation is confined to meson production off nuclei in photon-, pion-, proton-, and light-ion induced reactions and heavy-ion collisions at energies near the production threshold. Tools to extract the potential parameters are presented. In most cases, the real part of the potential is determined by comparing measured meson momentum distributions or excitation functions with collision model or transport model calculations. The imaginary part is extracted from transparency ratio measurements. Results on $K^+, K^0, K^-, eta, eta^prime, omega$, and $phi$ mesons are presented and compared with theoretical predictions. The interaction of $K^+$ and $K^0$ mesons with nuclei is found to be weakly repulsive, while the $K^-, eta,eta^prime, omega$ and $phi$ meson-nucleus potentials are attractive, however, with widely different strengths. Because of meson absorption in the nuclear medium the imaginary parts of the meson-nucleus potentials are all negative, again with a large spread. An outlook on planned experiments in the charm sector is given. In view of the determined potential parameters, the criteria and chances for experimentally observing meson-nucleus quasi-bound states are discussed. The most promising candidates appear to be the $eta$ and $eta^prime$ mesons.
A study of the 7Li(9Be,4He 10Be)2H reaction at E{beam}=70 MeV has been performed using resonant particle spectroscopy techniques and provides the first measurements of alpha-decaying states in 14C. Excited states are observed at 14.7, 15.5, 16.4, 18.5, 19.8, 20.6, 21.4, 22.4 and 24.0 MeV. The experimental technique was able to resolve decays to the various particle bound states in 10Be, and provides evidence for the preferential decay of the high energy excited states into states in 10Be at ~6 MeV. The decay processes are used to indicate the possible cluster structure of the 14C excited states.