Do you want to publish a course? Click here

$W$ Boson Production in Polarized p+p Collisions at RHIC

153   0   0.0 ( 0 )
 Added by Justin Stevens
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

The production of $W^{pm}$ bosons in longitudinally polarized $vec{p}+vec{p}$ collisions at RHIC provides a new means of studying the spin-flavor asymmetries of the proton sea quark distributions. Details of the $W^{pm}$ event selection in the $e^{pm}$ decay channel at mid-rapidity are presented, along with preliminary results for the production cross section and parity-violating single-spin asymmetry, $A_L$, from the STAR Collaborations 2009 data at $sqrt{s}=500$ GeV.



rate research

Read More

We report on the $W$ and $Z/gamma^*$ differential and total cross sections as well as the $W^+$/$W^-$ and $(W^+ + W^-)$/$(Z/gamma^*)$ cross-section ratios measured by the STAR experiment at RHIC in $p+p$ collisions at $sqrt{s} = 500$ GeV and $510$ GeV. The cross sections and their ratios are sensitive to quark and antiquark parton distribution functions. In particular, at leading order, the $W$ cross-section ratio is sensitive to the $bar{d}/bar{u}$ ratio. These measurements were taken at high $Q^2 sim M_W^2,M_Z^2$ and can serve as input into global analyses to provide constraints on the sea quark distributions. The results presented here combine three STAR data sets from 2011, 2012, and 2013, accumulating an integrated luminosity of 350 pb$^{-1}$. We also assess the expected impact that our $W^+/W^-$ cross-section ratios will have on various quark distributions, and find sensitivity to the $bar{u}-bar{d}$ and $bar{d}/bar{u}$ distributions.
81 - R. Debbe 2006
This report describes the recent analysis of identified charged particle production at high rapidity performed on data collected from p+p collisions at RHIC (sqrt{s}=200 GeV). The extracted invariant cross-sections compare well to NLO pQCD calculations. However, a puzzling high yield of protons at high rapidity and p_T has been found.
Particle production sensitive to non-factorizable and non-perturbative processes that contribute to the underlying event associated with a high transverse momentum ($p_{T}$) jet in proton+proton collisions at $sqrt{s}$=200 GeV is studied with the STAR detector. Each event is divided into three regions based on the azimuthal angle with respect to the highest-$p_{T}$ jet direction: in the leading jet direction (Toward), opposite to the leading jet (Away), and perpendicular to the leading jet (Transverse). In the Transverse region, the average charged particle density is found to be between 0.4 and 0.6 and the mean transverse momentum, $langle p_{T}rangle$, between 0.5-0.7 GeV/$c$ for particles with $p_{T}$$>$0.2 GeV/$c$ at mid-pseudorapidity ($|eta|$$<$1) and jet $p_{T}$$>$15 GeV/$c$. Both average particle density and $langle p_{T}rangle$ depend weakly on the leading jet $p_{T}$. Closer inspection of the Transverse region hints that contributions to the underlying event from initial- and final-state radiation are significantly smaller in these collisions than at the higher energies, up to 13 TeV, recorded at the LHC. Underlying event measurements associated with a high-$p_{T}$ jet will contribute to our understanding of QCD processes at hard and soft scales at RHIC energies, as well as provide constraints to modeling of underlying event dynamics.
We report measurements of single- and double- spin asymmetries for $W^{pm}$ and $Z/gamma^*$ boson production in longitudinally polarized $p+p$ collisions at $sqrt{s} = 510$ GeV by the STAR experiment at RHIC. The asymmetries for $W^{pm}$ were measured as a function of the decay lepton pseudorapidity, which provides a theoretically clean probe of the protons polarized quark distributions at the scale of the $W$ mass. The results are compared to theoretical predictions, constrained by recent polarized deep inelastic scattering measurements, and show a preference for a sizable, positive up antiquark polarization in the range $0.05<x<0.2$.
Large parity violating longitudinal single spin asymmetries A^{e^-}_L= -0.86^{+0.14}_{-0.30} and A^{e^+}_L= 0.88^{+0.12}_{-0.71} are observed for inclusive high transverse momentum electrons and positrons in polarized pp collisions at a center of mass energy of sqrt{s}=500 GeV with the PHENIX detector at RHIC. These e^{+/-} come mainly from the decay of W^{+/-} and Z^0 bosons, and the asymmetries directly demonstrate parity violation in the couplings of the W^{pm} to the light quarks. The observed electron and positron yields were used to estimate W^pm boson production cross sections equal to sigma(pp to W^+ X) times BR(W^ to u_e)= 144.1+/-21.2(stat)^{+3.4}_{-10.3}(syst) +/- 15%(norm) pb, and sigma(pp to W^{-}X) times BR(W^to e^-bar{ u_e}) = 31.7+/-12.1(stat)^{+10.1}_{-8.2}(syst)+/-15%(norm) pb.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا