Do you want to publish a course? Click here

The population of deformed bands in $^{48}$Cr by emission of $^{8}$Be from the $^{32}$S + $^{24}$Mg reaction

85   0   0.0 ( 0 )
 Added by Severin Thummerer
 Publication date 2001
  fields
and research's language is English




Ask ChatGPT about the research

Using particle-$gamma$ coincidences we have studied the population of final states after the emission of 2 $alpha$-particles and of $^{8}$Be in nuclei formed in $^{32}$S+$^{24}$Mg reactions at an energy of $textrm{E}_{rm L}(^{32}textrm{S}) = 130 {rm MeV}$. The data were obtained in a setup consisting of the GASP $gamma$-ray detection array and the multidetector array ISIS. Particle identification is obtained from the $Delta$E and E signals of the ISIS silicon detector telescopes, the $^{8}$Be being identified by the instantaneous pile up of the $Delta$E and E pulses. $gamma$-ray decays of the $^{48}$Cr nucleus are identified with coincidences set on 2 $alpha$-particles and on $^{8}$Be. Some transitions of the side-band with $K^pi=4^{-}$ show stronger population for $^{8}$Be emission relative to that of 2 $alpha$-particles (by a factor $1.5-1.8$). This observation is interpreted as due to an enhanced emission of $^{8}$Be into a more deformed nucleus. Calculations based on the extended Hauser-Feshbach compound decay formalism confirm this observation quantitatively.



rate research

Read More

Inclusive as well as exclusive energy spectra of the light charged particles emitted in the $^{28}$Si ($E_{lab}$=112.6 MeV) + $^{12}$C reaction has been measured using the {bf ICARE} multidetector array. The data have been analysed by statistical-model calculations using a spin-dependent level density parametrization. The results suggest significant deformation effects at high spin and cluster emission of $^8$Be.
106 - R. Nouicer , C. Beck , D. Mahboub 1996
The properties of the two-body channels in the $^{35}$Cl + $^{24}$Mg reaction at a bombarding energy of 275 MeV have been investigated by using fragment-fragment coincident techniques. The exclusive data show that the majority of events arises from a binary-decay process. The rather large number of secondary light charged-particles emitted from the two excited exit fragments are cnsistent with the expectations of the Extended Hauser-Feshbach Method. No evidence for the occurence of ternary break-up events is observed.
The $^{24}$Mg($alpha,gamma$)$^{28}$Si reaction influences the production of magnesium and silicon isotopes during carbon burning and is one of eight reaction rates found to significantly impact the shape of calculated X-ray burst light curves. The reaction rate is based on measured resonance strengths and known properties of levels in $^{28}$Si. The $^{24}$Mg($alpha,gamma$)$^{28}$Si reaction rate has been re-evaluated including recent additional indirect data. The reaction rate is substantially unchanged from previously calculated rates, especially at astrophysically important temperatures. Increases in the reaction rate could occur at lower temperatures due to as-yet unmeasured resonances but these increases have little astrophysical impact. The $^{24}$Mg($alpha,gamma$)$^{28}$Si reaction rate at temperatures relevant to carbon burning and Type I X-ray bursts is well constrained by the available experimental data. This removes one reaction from the list of eight previously found to be important for X-ray burst light curve model-observation comparisons.
296 - S.M. Cha , K.Y. Chae , A. Kim 2015
The $^{24}$Mg($p$, $alpha$)$^{21}$Na reaction was measured at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory in order to better constrain spins and parities of energy levels in $^{21}$Na for the astrophysically important $^{17}$F($alpha, p$)$^{20}$Ne reaction rate calculation. 31 MeV proton beams from the 25-MV tandem accelerator and enriched $^{24}$Mg solid targets were used. Recoiling $^{4}$He particles from the $^{24}$Mg($p$, $alpha$)$^{21}$Na reaction were detected by a highly segmented silicon detector array which measured the yields of $^{4}$He particles over a range of angles simultaneously. A new level at 6661 $pm$ 5 keV was observed in the present work. The extracted angular distributions for the first four levels of $^{21}$Na and Distorted Wave Born Approximation (DWBA) calculations were compared to verify and extract angular momentum transfer.
55 - K. Jessen 2003
Low spin states in the self-conjugate even-even nucleus 48-Cr were investigated using the MINIBALL gamma-ray spectrometer. At the FN tandem accelerator in Cologne the 46-Ti(3-He,n) reaction was used for the measurement of gamma-gamma coincidences for an excitation function from 7 to 12 MeV beam energy. 17 excited states were observed, nine for the first time by means of gamma-ray spectroscopy, and new spin assignments were made. No excited states apart from the ground band were observed below 3.4 MeV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا