Do you want to publish a course? Click here

$^{24}$Mg($p$, $alpha$)$^{21}$Na reaction study for spectroscopy of $^{21}$Na

297   0   0.0 ( 0 )
 Added by Kyung Chae
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

The $^{24}$Mg($p$, $alpha$)$^{21}$Na reaction was measured at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory in order to better constrain spins and parities of energy levels in $^{21}$Na for the astrophysically important $^{17}$F($alpha, p$)$^{20}$Ne reaction rate calculation. 31 MeV proton beams from the 25-MV tandem accelerator and enriched $^{24}$Mg solid targets were used. Recoiling $^{4}$He particles from the $^{24}$Mg($p$, $alpha$)$^{21}$Na reaction were detected by a highly segmented silicon detector array which measured the yields of $^{4}$He particles over a range of angles simultaneously. A new level at 6661 $pm$ 5 keV was observed in the present work. The extracted angular distributions for the first four levels of $^{21}$Na and Distorted Wave Born Approximation (DWBA) calculations were compared to verify and extract angular momentum transfer.



rate research

Read More

The $^{18}$Ne($alpha,p$)$^{21}$Na reaction plays a significant role in Type-I X-ray bursts. It is a major path in the breakout from the hot-CNO cycles to the synthesis of heavier elements in the $alpha p$-- and $rp$-processes. An experiment to determine the cross section of this reaction was performed with the ANASEN active-target detector system, determining the cross section at energies between 2.5 and 4 MeV in the center-of-mass frame. The measured cross sections for reactions populating the ground state in $^{21}$Na are consistent with results obtained from the time-inverse reaction, but significantly lower than the previously published experimental data of direct measurements. The total cross sections are also compared with those derived from indirect methods and statistical-model calculations. This experiment establishes a new experimental data set on the excitation function of the $^{18}$Ne($alpha,p$)$^{21}$Na reaction, revealing the significance of the excited states contributions to the total reaction cross section and allowing to separate the contribution of the $(alpha,2p)$ reaction. The impact of the measured cross section on thermal reaction rates is discussed.
The electric-quadrupole coupling constant of the ground states of the proton drip line nucleus $^{20}$Na($I^{pi}$ = 2$^{+}$, $T_{1/2}$ = 447.9 ms) and the neutron-deficient nucleus $^{21}$Na($I^{pi}$ = 3/2$^{+}$, $T_{1/2}$ = 22.49 s) in a hexagonal ZnO single crystal were precisely measured to be $|eqQ/h| = 690 pm 12$ kHz and 939 $pm$ 14 kHz, respectively, using the multi-frequency $beta$-ray detecting nuclear magnetic resonance technique under presence of an electric-quadrupole interaction. A electric-quadrupole coupling constant of $^{27}$Na in the ZnO crystal was also measured to be $|eqQ/h| = 48.4 pm 3.8$ kHz. The electric-quadrupole moments were extracted as $|Q(^{20}$Na)$|$ = 10.3 $pm$ 0.8 $e$ fm$^2$ and $|Q(^{21}$Na)$|$ = 14.0 $pm$ 1.1 $e$ fm$^2$, using the electric-coupling constant of $^{27}$Na and the known quadrupole moment of this nucleus as references. The present results are well explained by shell-model calculations in the full $sd$-shell model space.
This paper examines the $^{18}$Ne($alpha, p_{0}$)$^{21}$Na cross-section relevant in X-ray bursts. The study was performed with the K600 magnetic spectrometer in coincidence with the CAKE, a silicon detector array, at iThemba LABS in Cape Town, South Africa. A 100-MeV proton beam was impinged on a $^{24}$Mg target to study the $^{24}$Mg($p,t$)$^{22}$Mg reaction. The triton ejectiles were momentum-analysed with the magnetic spectrometer and proton decays from the $^{22}$Mg recoil nucleus to the ground state of $^{21}$Na and various excited states thereof were detected with the CAKE. In doing so, we were able to compare our results to previous direct and indirect measurements of the $^{18}$Ne($alpha, p$)$^{21}$Na reaction.
The $^{23}$Na($alpha,p$)$^{26}$Mg reaction has been identified as having a significant impact on the nucleosynthesis of several nuclei between Ne and Ti in type-Ia supernovae, and of $^{23}$Na and $^{26}$Al in massive stars. The reaction has been subjected to renewed experimental interest recently, motivated by high uncertainties in early experimental data and in the statistical Hauser-Feshbach models used in reaction rate compilations. Early experiments were affected by target deterioration issues and unquantifiable uncertainties. Three new independent measurements instead are utilizing inverse kinematics and Rutherford scattering monitoring to resolve this. In this work we present directly measured angular distributions of the emitted protons to eliminate a discrepancy in the assumptions made in the recent reaction rate measurements, which results in cross sections differing by a factor of 3. We derive a new combined experimental reaction rate for the $^{23}$Na($alpha,p$)$^{26}$Mg reaction with a total uncertainty of 30% at relevant temperatures. Using our new $^{23}$Na($alpha,p$)$^{26}$Mg rate, the $^{26}$Al and $^{23}$Na production uncertainty is reduced to within 8%. In comparison, using the factor of 10 uncertainty previously recommended by the rate compilation STARLIB, $^{26}$Al and $^{23}$Na production was changing by more than a factor of 2. In type-Ia supernova conditions, the impact on production of $^{23}$Na is constrained to within 15%.
The $^{23}$Na$(alpha,p)^{26}$Mg and $^{23}$Na$(alpha,n)^{26}$Al reactions are important for our understanding of the $^{26}$Al abundance in massive stars. The aim of this work is to report on a direct and simultaneous measurement of these astrophysically important reactions using an active target system. The reactions were investigated in inverse kinematics using $^{4}$He as the active target gas in the detector. We measured the excitation functions in the energy range of about 2 to 6 MeV in the center of mass. We have found that the cross sections of the $^{23}$Na$(alpha,p)^{26}$Mg and the $^{23}$Na$(alpha,n)^{26}$Al reactions are in good agreement with previous experiments, and with statistical model calculations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا