Let P be an extraspecial p-group which is neither dihedral of order 8, nor of odd order p^3 and exponent p. Let G be a finite group having P as a Sylow p-subgroup. Then the mod-p cohomology ring of G coincides with that of the normalizer N_G(P).
Among the generalizations of Serres theorem on the homotopy groups of a finite complex we isolate the one proposed by Dwyer and Wilkerson. Even though the spaces they consider must be 2-connected, we show that it can be used to both recover known results and obtain new theorems about p-completed classifying spaces.
Let $n, k geq 3$. In this paper, we analyse the quotient group $B_n/Gamma_k(P_n)$ of the Artin braid group $B_n$ by the subgroup $Gamma_k(P_n)$ belonging to the lower central series of the Artin pure braid group $P_n$. We prove that it is an almost-crystallographic group. We then focus more specifically on the case $k=3$. If $n geq 5$, and if $tau in N$ is such that $gcd(tau, 6) = 1$, we show that $B_n/Gamma_3 (P_n)$ possesses torsion $tau$ if and only if $S_n$ does, and we prove that there is a one-to-one correspondence between the conjugacy classes of elements of order $tau$ in $B_n/Gamma_3 (P_n)$ with those of elements of order $tau$ in the symmetric group $S_n$. We also exhibit a presentation for the almost-crystallographic group $B_n/Gamma_3 (P_n)$. Finally, we obtain some $4$-dimensional almost-Bieberbach subgroups of $B_3/Gamma_3 (P_3)$, we explain how to obtain almost-Bieberbach subgroups of $B_4/Gamma_3(P_4)$ and $B_3/Gamma_4(P_3)$, and we exhibit explicit elements of order $5$ in $B_5/Gamma_3 (P_5)$.
Let $pi$ be a group equipped with an action of a second group $G$ by automorphisms. We define the equivariant cohomological dimension ${sf cd}_G(pi)$, the equivariant geometric dimension ${sf gd}_G(pi)$, and the equivariant Lusternik-Schnirelmann category ${sf cat}_G(pi)$ in terms of the Bredon dimensions and classifying space of the family of subgroups of the semi-direct product $pirtimes G$ consisting of sub-conjugates of $G$. When $G$ is finite, we extend theorems of Eilenberg-Ganea and Stallings-Swan to the equivariant setting, thereby showing that all three invariants coincide (except for the possibility of a $G$-group $pi$ with ${sf cat}_G(pi)={sf cd}_G(pi)=2$ and ${sf gd}_G(pi)=3$). A main ingredient is the purely algebraic result that the cohomological dimension of any finite group with respect to any family of proper subgroups is greater than one. This implies a Stallings-Swan type result for families of subgroups which do not contain all finite subgroups.
We generalize Quillens $F$-isomorphism theorem, Quillens stratification theorem, the stable transfer, and the finite generation of cohomology rings from finite groups to homotopical groups. As a consequence, we show that the category of module spectra over $C^*(Bmathcal{G},mathbb{F}_p)$ is stratified and costratified for a large class of $p$-local compact groups $mathcal{G}$ including compact Lie groups, connected $p$-compact groups, and $p$-local finite groups, thereby giving a support-theoretic classification of all localizing and colocalizing subcategories of this category. Moreover, we prove that $p$-compact groups admit a homotopical form of Gorenstein duality.
We modify the transchromatic character maps to land in a faithfully flat extension of Morava E-theory. Our construction makes use of the interaction between topological and algebraic localization and completion. As an application we prove that centralizers of tuples of commuting prime-power order elements in good groups are good and we compute a new example.