Do you want to publish a course? Click here

An asymptotic property of Schachermayers space under renorming

71   0   0.0 ( 0 )
 Added by Denny H. Leung
 Publication date 1999
  fields
and research's language is English




Ask ChatGPT about the research

A Banach space X with closed unit ball B is said to have property 2-beta, repsectively 2-NUC if for every ep > 0, there exists delta > 0 such that for every ep-separated sequence (x_n) in the unit ball B, and every x in B, there are distinct indices m and n such that ||x + x_m + x_n|| < 3(1 - delta), respectively, ||x_m + x_n|| < 2(1 - delta). It is shown that a Banach space constructed by Schachermayer has property 2-beta but cannot be renormed to have property 2-NUC.



rate research

Read More

We study the problem of improving the greedy constant or the democracy constant of a basis of a Banach space by renorming. We prove that every Banach space with a greedy basis can be renormed, for a given $vare>0$, so that the basis becomes $(1+vare)$-democratic, and hence $(2+vare)$-greedy, with respect to the new norm. If in addition the basis is bidemocratic, then there is a renorming so that in the new norm the basis is $(1+vare)$-greedy. We also prove that in the latter result the additional assumption of the basis being bidemocratic can be removed for a large class of bases. Applications include the Haar systems in $L_p[0,1]$, $1<p<infty$, and in dyadic Hardy space $H_1$, as well as the unit vector basis of Tsirelson space.
80 - Taras Banakh 2021
We prove that every isometry between the unit spheres of 2-dimensional Banach spaces extends to a linear isometry of the Banach spaces. This resolves the famous Tingleys problem in the class of 2-dimensional Banach spaces.
A Banach space $X$ has the $Mazur$-$Ulam$ $property$ if any isometry from the unit sphere of $X$ onto the unit sphere of any other Banach space $Y$ extends to a linear isometry of the Banach spaces $X,Y$. A Banach space $X$ is called $smooth$ if the unit ball has a unique supporting functional at each point of the unit sphere. We prove that each non-smooth 2-dimensional Banach space has the Mazur-Ulam property.
We construct an indecomposable reflexive Banach space $X_{ius}$ such that every infinite dimensional closed subspace contains an unconditional basic sequence. We also show that every operator $Tin mathcal{B}(X_{ius})$ is of the form $lambda I+S$ with $S$ a strictly singular operator.
In this paper we consider the following problem: Let $X_k$, be a Banach space with a normalized basis $(e_{(k,j)})_j$, whose biorthogonals are denoted by $(e_{(k,j)}^*)_j$, for $kinmathbb{N}$, let $Z=ell^infty(X_k:kinmathbb{N})$ be their $ell^infty$-sum, and let $T:Zto Z$ be a bounded linear operator, with a large diagonal, i.e. $$inf_{k,j} big|e^*_{(k,j)}(T(e_{(k,j)})big|>0.$$ Under which condition does the identity on $Z$ factor through $T$? The purpose of this paper is to formulate general conditions for which the answer is positive.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا