Do you want to publish a course? Click here

Price systems for markets with transaction costs and control problems for some finance problems

122   0   0.0 ( 0 )
 Added by Shuenn-Jyi Sheu
 Publication date 2007
  fields Financial
and research's language is English




Ask ChatGPT about the research

In a market with transaction costs, the price of a derivative can be expressed in terms of (preconsistent) price systems (after Kusuoka (1995)). In this paper, we consider a market with binomial model for stock price and discuss how to generate the price systems. From this, the price formula of a derivative can be reformulated as a stochastic control problem. Then the dynamic programming approach can be used to calculate the price. We also discuss optimization of expected utility using price systems.



rate research

Read More

A risk-averse agent hedges her exposure to a non-tradable risk factor $U$ using a correlated traded asset $S$ and accounts for the impact of her trades on both factors. The effect of the agents trades on $U$ is referred to as cross-impact. By solving the agents stochastic control problem, we obtain a closed-form expression for the optimal strategy when the agent holds a linear position in $U$. When the exposure to the non-tradable risk factor $psi(U_T)$ is non-linear, we provide an approximation to the optimal strategy in closed-form, and prove that the value function is correctly approximated by this strategy when cross-impact and risk-aversion are small. We further prove that when $psi(U_T)$ is non-linear, the approximate optimal strategy can be written in terms of the optimal strategy for a linear exposure with the size of the position changing dynamically according to the exposures Delta under a particular probability measure.
This paper presents machine learning techniques and deep reinforcement learningbased algorithms for the efficient resolution of nonlinear partial differential equations and dynamic optimization problems arising in investment decisions and derivative pricing in financial engineering. We survey recent results in the literature, present new developments, notably in the fully nonlinear case, and compare the different schemes illustrated by numerical tests on various financial applications. We conclude by highlighting some future research directions.
We consider a general path-dependent version of the hedging problem with price impact of Bouchard et al. (2019), in which a dual formulation for the super-hedging price is obtained by means of PDE arguments, in a Markovian setting and under strong regularity conditions. Using only probabilistic arguments, we prove, in a path-dependent setting and under weak regularity conditions, that any solution to this dual problem actually allows one to construct explicitly a perfect hedging portfolio. From a pure probabilistic point of view, our approach also allows one to exhibit solutions to a specific class of second order forward backward stochastic differential equations, in the sense of Cheridito et al. (2007). Existence of a solution to the dual optimal control problem is also addressed in particular settings. As a by-product of our arguments, we prove a version of It{^o}s Lemma for path-dependent functionals that are only C^{0,1} in the sense of Dupire.
161 - Theodoros Tsagaris 2008
We consider the Brownian market model and the problem of expected utility maximization of terminal wealth. We, specifically, examine the problem of maximizing the utility of terminal wealth under the presence of transaction costs of a fund/agent investing in futures markets. We offer some preliminary remarks about statistical arbitrage strategies and we set the framework for futures markets, and introduce concepts such as margin, gearing and slippage. The setting is of discrete time, and the price evolution of the futures prices is modelled as discrete random sequence involving Itos sums. We assume the drift and the Brownian motion driving the return process are non-observable and the transaction costs are represented by the bid-ask spread. We provide explicit solution to the optimal portfolio process, and we offer an example using logarithmic utility.
161 - Patrick Cattiaux 2021
We study functional inequalities (Poincare, Cheeger, log-Sobolev) for probability measures obtained as perturbations. Several explicit results for general measures as well as log-concave distributions are given.The initial goal of this work was to obtain explicit bounds on the constants in view of statistical applications for instance. These results are then applied to the Langevin Monte-Carlo method used in statistics in order to compute Bayesian estimators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا