No Arabic abstract
A risk-averse agent hedges her exposure to a non-tradable risk factor $U$ using a correlated traded asset $S$ and accounts for the impact of her trades on both factors. The effect of the agents trades on $U$ is referred to as cross-impact. By solving the agents stochastic control problem, we obtain a closed-form expression for the optimal strategy when the agent holds a linear position in $U$. When the exposure to the non-tradable risk factor $psi(U_T)$ is non-linear, we provide an approximation to the optimal strategy in closed-form, and prove that the value function is correctly approximated by this strategy when cross-impact and risk-aversion are small. We further prove that when $psi(U_T)$ is non-linear, the approximate optimal strategy can be written in terms of the optimal strategy for a linear exposure with the size of the position changing dynamically according to the exposures Delta under a particular probability measure.
Trading frictions are stochastic. They are, moreover, in many instances fast-mean reverting. Here, we study how to optimally trade in a market with stochastic price impact and study approximations to the resulting optimal control problem using singular perturbation methods. We prove, by constructing sub- and super-solutions, that the approximations are accurate to the specified order. Finally, we perform some numerical experiments to illustrate the effect that stochastic trading frictions have on optimal trading.
We present the closed-form solution to the problem of hedging price and quantity risks for energy retailers (ER), using financial instruments based on electricity price and weather indexes. Our model considers an ER who is intermediary in a regulated electricity market. ERs buy a fixed quantity of electricity at a variable cost and must serve a variable demand at a fixed cost. Thus ERs are subject to both price and quantity risks. To hedge such risks, an ER could construct a portfolio of financial instruments based on price and weather indexes. We construct the closed form solution for the optimal portfolio for the mean-Var model in the discrete setting. Our model does not make any distributional assumption.
An investor with constant absolute risk aversion trades a risky asset with general It^o-dynamics, in the presence of small proportional transaction costs. In this setting, we formally derive a leading-order optimal trading policy and the associated welfare, expressed in terms of the local dynamics of the frictionless optimizer. By applying these results in the presence of a random endowment, we obtain asymptotic formulas for utility indifference prices and hedging strategies in the presence of small transaction costs.
We consider conditional-mean hedging in a fractional Black-Scholes pricing model in the presence of proportional transaction costs. We develop an explicit formula for the conditional-mean hedging portfolio in terms of the recently discovered explicit conditional law of the fractional Brownian motion.
We study superhedging of contingent claims with physical delivery in a discrete-time market model with convex transaction costs. Our model extends Kabanovs currency market model by allowing for nonlinear illiquidity effects. We show that an appropriate generalization of Schachermayers robust no arbitrage condition implies that the set of claims hedgeable with zero cost is closed in probability. Combined with classical techniques of convex analysis, the closedness yields a dual characterization of premium processes that are sufficient to superhedge a given claim process. We also extend the fundamental theorem of asset pricing for general conical models.