No Arabic abstract
This paper is part of an ongoing program to develop a theory of generalized differential geometry. We consider the space $mathcal{G}[X,Y]$ of Colombeau generalized functions defined on a manifold $X$ and taking values in a manifold $Y$. This space is essential in order to study concepts such as flows of generalized vector fields or geodesics of generalized metrics. We introduce an embedding of the space of continuous mappings $mathcal{C}(X,Y)$ into $mathcal{G}[X,Y]$ and study the sheaf properties of $mathcal{G}[X,Y]$. Similar results are obtained for spaces of generalized vector bundle homomorphisms. Based on these constructions we propose the definition of a space $mathcal{D}[X,Y]$ of distributions on $X$ taking values in $Y$. $mathcal{D}[X,Y]$ is realized as a quotient of a certain subspace of $mathcal{G}[X,Y]$.
We present an extension of the classical theory of calculus of variations to generalized functions. The framework is the category of generalized smooth functions, which includes Schwartz distributions while sharing many nonlinear properties with ordinary smooth functions. We prove full connections between extremals and Euler-Lagrange equations, classical necessary and sufficient conditions to have a minimizer, the necessary Legendre condition, Jacobis theorem on conjugate points and Noethers theorem. We close with an application to low regularity Riemannian geometry.
In this note we define and study a Hilbert space-valued stochastic integral of operator-valued functions with respect to Hilbert space-valued measures. We show that this integral generalizes the classical Ito stochastic integral of adapted processes with respect to normal martingales and the Ito integral in a Fock space
For suitable finite-dimensional smooth manifolds M (possibly with various kinds of boundary or corners), locally convex topological vector spaces F and non-negative integers k, we construct continuous linear operators S_n from the space of F-valued k times continuously differentiable functions on M to the corresponding space of smooth functions such that S_n(f) converges to f in C^k(M,F) as n tends to infinity, uniformly for f in compact subsets of C^k(M,F). We also study the existence of continuous linear right inverses for restriction maps from C^k(M,F) to C^k(L,F) if L is a closed subset of M, endowed with a C^k-manifold structure turning the inclusion map from L to M into a C^k-map. Moreover, we construct continuous linear right inverses for restriction operators between spaces of sections in vector bundles in many situations, and smooth local right inverses for restriction operators between manifolds of mappings. We also obtain smoothing results for sections in fibre bundles.
Characterizing the appearance of real-world surfaces is a fundamental problem in multidimensional reflectometry, computer vision and computer graphics. For many applications, appearance is sufficiently well characterized by the bidirectional reflectance distribution function (BRDF). We treat BRDF measurements as samples of points from high-dimensional non-linear non-convex manifolds. BRDF manifolds form an infinite-dimensional space, but typically the available measurements are very scarce for complicated problems such as BRDF estimation. Therefore, an efficient learning strategy is crucial when performing the measurements. In this paper, we build the foundation of a mathematical framework that allows to develop and apply new techniques within statistical design of experiments and generalized proactive learning, in order to establish more efficient sampling and measurement strategies for BRDF data manifolds.
New classes of generalized Nevanlinna functions, which under multiplication with an arbitrary fixed symmetric rational function remain generalized Nevanlinna functions, are introduced. Characterizations for these classes of functions are established by connecting the canonical factorizations of the product function and the original generalized Nevanlinna function in a constructive manner. Also a detailed functional analytic treatment of these classes of functions is carried out by investigating the connection between the realizations of the product function and the original function. The operator theoretic treatment of these realizations is based on the notions of rigged spaces, boundary triplets, and associated Weyl functions.