No Arabic abstract
Using a strong version of the Curve Selection Lemma for real semianalytic sets, we prove that for an arbitrary connected Lie group $G$, each connected component of the set $E_n(G)$ of all elements of order $n$ in $G$ is a conjugacy class in $G$. In particular, all conjugacy classes of finite order in $G$ are closed. Some properties of connected components of $E_n(G)$ are also given.
We prove that for a connected, semisimple linear Lie group $G$ the spaces of generating pairs of elements or subgroups are well-behaved in a number of ways: the set of pairs of elements generating a dense subgroup is Zariski-open in the compact case, Euclidean-open in general, and always dense. Similarly, for sufficiently generic circle subgroups $H_i$, $i=1,2$ of $G$, the space of conjugates of $H_i$ that generate a dense subgroup is always Zariski-open and dense. Similar statements hold for pairs of Lie subalgebras of the Lie algebra $Lie(G)$.
Let H be a reductive subgroup of a reductive group G over an algebraically closed field k. We consider the action of H on G^n, the n-fold Cartesian product of G with itself, by simultaneous conjugation. We give a purely algebraic characterization of the closed H-orbits in G^n, generalizing work of Richardson which treats the case H = G. This characterization turns out to be a natural generalization of Serres notion of G-complete reducibility. This concept appears to be new, even in characteristic zero. We discuss how to extend some key results on G-complete reducibility in this framework. We also consider some rationality questions.
In this paper we classify the finite groups satisfying the following property $P_4$: their orders of representatives are set-wise relatively prime for any 4 distinct non-central conjugacy classes.
The twin group $T_n$ is a right angled Coxeter group generated by $n-1$ involutions and the pure twin group $PT_n$ is the kernel of the natural surjection from $T_n$ onto the symmetric group on $n$ symbols. In this paper, we investigate some structural aspects of these groups. We derive a formula for the number of conjugacy classes of involutions in $T_n$, which quite interestingly, is related to the well-known Fibonacci sequence. We also derive a recursive formula for the number of $z$-classes of involutions in $T_n$. We give a new proof of the structure of $Aut(T_n)$ for $n ge 3$, and show that $T_n$ is isomorphic to a subgroup of $Aut(PT_n)$ for $n geq 4$. Finally, we construct a representation of $T_n$ to $Aut(F_n)$ for $n ge 2$.
All finite simple groups are determined with the property that every Galois orbit on conjugacy classes has size at most 4. From this we list all finite simple groups $G$ for which the normalized group of central units of the integral group ring ZG is an infinite cyclic group.