Differentiable real function reproducing primes up to a given number and having a differentiable inverse function is constructed. This inverse function is compared with the Riemann-Von Mangoldt exact expression for the number of primes not exceeding a given value. Software for computation of the direct and inverse functions and their derivatives is developed. Examples of approximate solution of Diophantine equations on the primes are given.
We study two polynomial counting questions in arithmetic statistics via a combination of Fourier analytic and arithmetic methods. First, we obtain new quantitative forms of Hilberts Irreducibility Theorem for degree $n$ polynomials $f$ with $mathrm{Gal}(f) subseteq A_n$. We study this both for monic polynomials and non-monic polynomials. Second, we study lower bounds on the number of degree $n$ monic polynomials with almost prime discriminants, as well as the closely related problem of lower bounds on the number of degree $n$ number fields with almost prime discriminants.
The Zagier $L$-series encode data of real quadratic fields. We study the average size of these $L$-series, and prove asymptotic expansions and omega results for the expansion. We then show how the error term in the asymptotic expansion can be used to obtain error terms in the prime geodesic theorem.
We introduce intrinsic interpolatory bases for data structured on graphs and derive properties of those bases. Polyharmonic Lagrange functions are shown to satisfy exponential decay away from their centers. The decay depends on the density of the zeros of the Lagrange function, showing that they scale with the density of the data. These results indicate that Lagrange-type bases are ideal building blocks for analyzing data on graphs, and we illustrate their use in kernel-based machine learning applications.
A generalized spline on a graph $G$ with edges labeled by ideals in a ring $R$ consists of a vertex-labeling by elements of $R$ so that the labels on adjacent vertices $u, v$ differ by an element of the ideal associated to the edge $uv$. We study the $R$-module of generalized splines and produce minimum generating sets for several families of graphs and edge-labelings: $1)$ for all graphs when the edge-labelings consist of at most two finitely-generated ideals, and $2)$ for cycles when the edge-labelings consist of principal ideals generated by elements of the form $(ax+by)^2$ in the polynomial ring $mathbb{C}[x,y]$. We obtain the generators using a constructive algorithm that is suitable for computer implementation and give several applications, including contextualizing several results in classical (analytic) splines.
In this work we introduce a new polynomial representation of the Bernoulli numbers in terms of polynomial sums allowing on the one hand a more detailed understanding of their mathematical structure and on the other hand provides a computation of $B_{2n}$ as a function of B$_{2n-2}$ only. Furthermore, we show that a direct computation of the Riemann zeta-function and their derivatives at k $in mathbb Z$ is possible in terms of these polynomial representation. As an explicit example, our polynomial Bernoulli number representation is applied to fast approximate computations of $zeta$(3), $zeta$(5) and $zeta$(7).