We examine residual properties of word-hyperbolic groups, adapting a method introduced by Darren Long to study the residual properties of Kleinian groups.
We show that Out(G) is residually finite if G is a one-ended group that is hyperbolic relative to virtually polycyclic subgroups. More generally, if G is one-ended and hyperbolic relative to proper residually finite subgroups, the group of outer automorphisms preserving the peripheral structure is residually finite. We also show that Out(G) is virtually p-residually finite for every prime p if G is one-ended and toral relatively hyperbolic, or infinitely-ended and virtually p-residually finite.
We prove that the compressed word problem in a group that is hyperbolic relative to a collection of free abelian subgroups is solvable in polynomial time.
We build quasi--isometry invariants of relatively hyperbolic groups which detect the hyperbolic parts of the group; these are variations of the stable dimension constructions previously introduced by the authors. We prove that, given any finite collection of finitely generated groups $mathcal{H}$ each of which either has finite stable dimension or is non-relatively hyperbolic, there exist infinitely many quasi--isometry types of one--ended groups which are hyperbolic relative to $mathcal{H}$. The groups are constructed using small cancellation theory over free products.
We prove that for a one-ended hyperbolic graph $X$, the size of the quotient $X/G$ by a group $G$ acting freely and cocompactly bounds from below the number of simplices in an Eilenberg-MacLane space for $G$. We apply this theorem to show that one-ended hyperbolic cubulated groups (or more generally, one-ended hyperbolic groups with globally stable cylinders `a la Rips-Sela) cannot contain isomorphic finite-index subgroups of different indices.
The set of equivalence classes of cobounded actions of a group on different hyperbolic metric spaces carries a natural partial order. The resulting poset thus gives rise to a notion of the best hyperbolic action of a group as the largest element of this poset, if such an element exists. We call such an action a largest hyperbolic action. While hyperbolic groups admit largest hyperbolic actions, we give evidence in this paper that this phenomenon is rare for non-hyperbolic groups. In particular, we prove that many families of groups of geometric origin do not have largest hyperbolic actions, including for instance many 3-manifold groups and most mapping class groups. Our proofs use the quasi-trees of metric spaces of Bestvina--Bromberg--Fujiwara, among other tools. In addition, we give a complete characterization of the poset of hyperbolic actions of Anosov mapping torus groups, and we show that mapping class groups of closed surfaces of genus at least two have hyperbolic actions which are comparable only to the trivial action.