Do you want to publish a course? Click here

Relatively hyperbolic groups with fixed peripherals

109   0   0.0 ( 0 )
 Added by David Hume
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We build quasi--isometry invariants of relatively hyperbolic groups which detect the hyperbolic parts of the group; these are variations of the stable dimension constructions previously introduced by the authors. We prove that, given any finite collection of finitely generated groups $mathcal{H}$ each of which either has finite stable dimension or is non-relatively hyperbolic, there exist infinitely many quasi--isometry types of one--ended groups which are hyperbolic relative to $mathcal{H}$. The groups are constructed using small cancellation theory over free products.



rate research

Read More

We show that Out(G) is residually finite if G is a one-ended group that is hyperbolic relative to virtually polycyclic subgroups. More generally, if G is one-ended and hyperbolic relative to proper residually finite subgroups, the group of outer automorphisms preserving the peripheral structure is residually finite. We also show that Out(G) is virtually p-residually finite for every prime p if G is one-ended and toral relatively hyperbolic, or infinitely-ended and virtually p-residually finite.
218 - Ashot Minasyan , Denis Osin 2010
Let G be a finitely generated relatively hyperbolic group. We show that if no peripheral subgroup of G is hyperbolic relative to a collection of proper subgroups, then the fixed subgroup of every automorphism of G is relatively quasiconvex. It follows that the fixed subgroup is itself relatively hyperbolic with respect to a natural family of peripheral subgroups. If all peripheral subgroups of G are slender (respectively, slender and coherent), our result implies that the fixed subgroup of every automorphism of G is finitely generated (respectively, finitely presented). In particular, this happens when G is a limit group, and thus for any automorphism phi of G, Fix(phi) is a limit subgroup of G.
The set of equivalence classes of cobounded actions of a group on different hyperbolic metric spaces carries a natural partial order. The resulting poset thus gives rise to a notion of the best hyperbolic action of a group as the largest element of this poset, if such an element exists. We call such an action a largest hyperbolic action. While hyperbolic groups admit largest hyperbolic actions, we give evidence in this paper that this phenomenon is rare for non-hyperbolic groups. In particular, we prove that many families of groups of geometric origin do not have largest hyperbolic actions, including for instance many 3-manifold groups and most mapping class groups. Our proofs use the quasi-trees of metric spaces of Bestvina--Bromberg--Fujiwara, among other tools. In addition, we give a complete characterization of the poset of hyperbolic actions of Anosov mapping torus groups, and we show that mapping class groups of closed surfaces of genus at least two have hyperbolic actions which are comparable only to the trivial action.
We give a complete list of the cobounded actions of solvable Baumslag-Solitar groups on hyperbolic metric spaces up to a natural equivalence relation. The set of equivalence classes carries a natural partial order first introduced by Abbott-Balasubramanya-Osin, and we describe the resulting poset completely. There are finitely many equivalence classes of actions, and each equivalence class contains the action on a point, a tree, or the hyperbolic plane.
225 - Derek Holt , Sarah Rees 2020
We prove that the compressed word problem in a group that is hyperbolic relative to a collection of free abelian subgroups is solvable in polynomial time.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا