Do you want to publish a course? Click here

Random walks on finite lattice tubes

109   0   0.0 ( 0 )
 Added by Murray Batchelor
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

Exact results are obtained for random walks on finite lattice tubes with a single source and absorbing lattice sites at the ends. Explicit formulae are derived for the absorption probabilities at the ends and for the expectations that a random walk will visit a particular lattice site before being absorbed. Results are obtained for lattice tubes of arbitrary size and each of the regular lattice types; square, triangular and honeycomb. The results include an adjustable parameter to model the effects of strain, such as surface curvature, on the surface diffusion. Results for the triangular lattice tubes and the honeycomb lattice tubes model diffusion of adatoms on single walled zig-zag carbon nano-tubes with open ends.



rate research

Read More

123 - M.T. Batchelor 2002
The problem of a random walk on a finite triangular lattice with a single interior source point and zig-zag absorbing boundaries is solved exactly. This problem has been previously considered intractable.
We consider the generating function of the algebraic area of lattice walks, evaluated at a root of unity, and its relation to the Hofstadter model. In particular, we obtain an expression for the generating function of the n-th moments of the Hofstadter Hamiltonian in terms of a complete elliptic integral, evaluated at a rational function. This in turn gives us both exact and asymptotic formulas for these moments.
149 - Miquel Montero 2011
The Continuous-Time Random Walk (CTRW) formalism can be adapted to encompass stochastic processes with memory. In this article we will show how the random combination of two different unbiased CTRWs can give raise to a process with clear drift, if one of them is a CTRW with memory. If one identifies the other one as noise, the effect can be thought as a kind of stochastic resonance. The ultimate origin of this phenomenon is the same of the Parrondos paradox in game theory
In this paper, we consider a stochastic process that may experience random reset events which relocate the system to its starting position. We focus our attention on a one-dimensional, monotonic continuous-time random walk with a constant drift: the process moves in a fixed direction between the reset events, either by the effect of the random jumps, or by the action of a deterministic bias. However, the orientation of its motion is randomly determined after each restart. As a result of these alternating dynamics, interesting properties do emerge. General formulas for the propagator as well as for two extreme statistics, the survival probability and the mean first-passage time, are also derived. The rigor of these analytical results is verified by numerical estimations, for particular but illuminating examples.
227 - Stephane Ouvry , Shuang Wu 2018
We propose a formula for the enumeration of closed lattice random walks of length $n$ enclosing a given algebraic area. The information is contained in the Kreft coefficients which encode, in the commensurate case, the Hofstadter secular equation for a quantum particle hopping on a lattice coupled to a perpendicular magnetic field. The algebraic area enumeration is possible because it is split in $2^{n/2-1}$ pieces, each tractable in terms of explicit combinatorial expressions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا