Do you want to publish a course? Click here

On the algebraic area of lattice walks and the Hofstadter model

142   0   0.0 ( 0 )
 Added by Stephane Ouvry
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the generating function of the algebraic area of lattice walks, evaluated at a root of unity, and its relation to the Hofstadter model. In particular, we obtain an expression for the generating function of the n-th moments of the Hofstadter Hamiltonian in terms of a complete elliptic integral, evaluated at a rational function. This in turn gives us both exact and asymptotic formulas for these moments.

rate research

Read More

227 - Stephane Ouvry , Shuang Wu 2018
We propose a formula for the enumeration of closed lattice random walks of length $n$ enclosing a given algebraic area. The information is contained in the Kreft coefficients which encode, in the commensurate case, the Hofstadter secular equation for a quantum particle hopping on a lattice coupled to a perpendicular magnetic field. The algebraic area enumeration is possible because it is split in $2^{n/2-1}$ pieces, each tractable in terms of explicit combinatorial expressions.
We generalize Thouless bandwidth formula to its n-th moment. We obtain a closed expression in terms of polygamma, zeta and Euler numbers.
108 - B.I. Henry , M.T. Batchelor 2003
Exact results are obtained for random walks on finite lattice tubes with a single source and absorbing lattice sites at the ends. Explicit formulae are derived for the absorption probabilities at the ends and for the expectations that a random walk will visit a particular lattice site before being absorbed. Results are obtained for lattice tubes of arbitrary size and each of the regular lattice types; square, triangular and honeycomb. The results include an adjustable parameter to model the effects of strain, such as surface curvature, on the surface diffusion. Results for the triangular lattice tubes and the honeycomb lattice tubes model diffusion of adatoms on single walled zig-zag carbon nano-tubes with open ends.
We study the class of non-holonomic power series with integer coefficients that reduce, modulo primes, or powers of primes, to algebraic functions. In particular we try to determine whether the susceptibility of the square-lattice Ising model belongs to this class, and more broadly whether the susceptibility is a solution of a differentially algebraic equation. Initial results on Tuttes non-linear ordinary differential equation (ODE) and other simple quadratic non-linear ODEs suggest that a large set of differentially algebraic power series solutions with integer coefficients might reduce to algebraic functions modulo primes, or powers of primes. Here we give several examples of series with integer coefficients and non-zero radius of convergence that reduce to algebraic functions modulo (almost) every prime (or power of a prime). These examples satisfy differentially algebraic equations with the encoding polynomial occasionally possessing quite high degree (and thus difficult to identify even with long series). Additionally, we have extended both the high- and low-temperature Ising square-lattice susceptibility series to 5043 coefficients. We find that even this long series is insufficient to determine whether it reduces to algebraic functions modulo $3$, $5$, etc. This negative result is in contrast to the comparatively easy confirmation that the corresponding series reduce to algebraic functions modulo powers of $2$.
123 - M.T. Batchelor 2002
The problem of a random walk on a finite triangular lattice with a single interior source point and zig-zag absorbing boundaries is solved exactly. This problem has been previously considered intractable.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا