No Arabic abstract
Characters of $E_8otimes E_8$ and SO(32) heterotic strings involving the full internal symmetry Cartan subalgebra generators are defined after circle compactification so that they are T dual. The novel point, as compared with an earlier study of the type II case (hep-th/9707107), is the appearence of Wilson lines. Using SO(17,1) transformations between the weight lattices reveals the existence of an intermediate theory where T duality transformations are disentangled from the internal symmetry. This intermediate theory corresponds to a sort of twisted compactification of a novel type. Its modular invariance follows from an interesting interplay between three representations of the modular group.
Grand unification groups (GUTs) are constructed from SO(32) heterotic string via $Z_{12-I}$ orbifold compactification. So far, most phenomenological studies from string compactification relied on $EE8$ heterotic string, and this invites the SO(32) heterotic string very useful for future phenomenological studies. Here, spontaneous symmetry breaking is achieved by Higgsing of the anti-symmetric tensor representations of SU($N$). The anti-SU($N$) presented in this paper is a completely different class from the flipped-SU($N$)s from the spinor representations of SO($2N$). Here, we realize chiral representations: $tsixoplus 5cdot ineb $ for a SU(9) GUT and $3{{ten}_Loplus {fiveb}_L}$ for a SU(5)$$ GUT. In particular, we confirm that the non-Abelian anomalies of SU(9) gauge group vanish and hence our compactification scheme achieves the key requirement. We also present the Yukawa couplings, in particular for the heaviest fermion, $t$, and lightest fermions, neutrinos. In the supersymmetric version, we present a scenario how supersymmetry can be broken dynamically via the confining gauge group SU(9). Three families in the visible sector are interpreted as the chiral spectra of SU(5)$$ GUT.
We search for realistic supersymmetric standard-like models from SO(32) heterotic string theory on factorizable tori with multiple magnetic fluxes. Three chiral ganerations of quarks and leptons are derived from the adjoint and vector representations of SO(12) gauge groups embedded in SO(32) adjoint representation. Massless spectra of our models also include Higgs fields, which have desired Yukawa couplings to quarks and leptons at the tree-level.
This contribution gives in sigma-model language a short review of recent work on T-duality for open strings in the presence of abelian or non-abelian gauge fields. Furthermore, it adds a critical discussion of the relation between RG beta-functions and the Born-Infeld action in the case of a string coupled to a D-brane.
We present a review of heterotic-type I string duality. In particular, we discuss the effective field theory of six- and four-dimensional compactifications with N>1 supersymmetries. We then describe various duality tests by comparing gauge couplings, N=2 prepotentials, as well as higher-derivative F-terms. Based on invited lectures delivered at: 33rd Karpacz Winter School of Theoretical Physics ``Duality, Strings and Fields, Przesieka, Poland, 13 - 22 February 1997; Trieste Conference on Duality Symmetries in String Theory, Trieste, Italy, 1 - 4 April 1997; Cargese Summer School ``Strings, Branes and Dualities, Cargese, France, 26 May - 14 June 1997.
We discuss T-duality for open strings in general background fields both in the functional integral formulation as well as in the language of canonical transformations. The Dirichlet boundary condition in the dual theory has to be treated as a constraint on the functional integration. Furthermore, we give meaning to the notion of matrix valued string end point position in the presence of nonabelian gauge field background.