Do you want to publish a course? Click here

The KP Equation from Plebanski and $SU(infty)$ Self-Dual Yang-Mills

83   0   0.0 ( 0 )
 Publication date 1993
  fields
and research's language is English
 Authors Carlos Castro




Ask ChatGPT about the research

Starting from a self-dual $SU(infty)$ Yang-Mills theory in $(2+2)$ dimensions, the Plebanski second heavenly equation is obtained after a suitable dimensional reduction. The self-dual gravitational background is the cotangent space of the internal two-dimensional Riemannian surface required in the formulation of $SU(infty)$ Yang-Mills theory. A subsequent dimensional reduction leads to the KP equation in $(1+2)$ dimensions after the relationship from the Plebanski second heavenly function, $Omega$, to the KP function, $u$, is obtained. Also a complexified KP equation is found when a different dimensional reduction scheme is performed . Such relationship between $Omega$ and $u$ is based on the correspondence between the $SL(2,R)$ self-duality conditions in $(3+3)$ dimensions of Das, Khviengia, Sezgin (DKS) and the ones of $SU(infty)$ in $(2+2)$ dimensions . The generalization to the Supersymmetric KP equation should be straightforward by extending the construction of the bosonic case to the previous Super-Plebanski equation, found by us in [1], yielding self-dual supergravity backgrounds in terms of the light-cone chiral superfield, $Theta$, which is the supersymmetric analog of $Omega$. The most important consequence of this Plebanski-KP correspondence is that $W$ gravity can be seen as the gauge theory of $phi$-diffeomorphisms in the space of dimensionally-reduced $D=2+2,~SU^*(infty)$ Yang-Mills instantons. These $phi$ diffeomorphisms preserve a volume-three-form and are, precisely, the ones which provide the Plebanski-KP correspondence.



rate research

Read More

We reconsider the renormalizability of topological Yang-Mills field theories in (anti-)self-dual Landau gauges. By employing algebraic renormalization techniques we show that there is only one independent renormalization. Moreover, due to the rich set of Ward identities, we are able to obtain some important exact features of the (connected and one-particle irreducible) two-point functions. Specifically, we show that all two-point functions are tree-level exact.
By using the self-dual Yang-Mills (SDYM) equation as an example, we study a method for relating symmetries and recursion operators of two partial differential equations connected to each other by a non-auto-Backlund transformation. We prove the Lie-algebra isomorphism between the symmetries of the SDYM equation and those of the potential SDYM (PSDYM) equation, and we describe the construction of the recursion operators for these two systems. Using certain known aspects of the PSDYM symmetry algebra, we draw conclusions regarding the Lie algebraic structure of the potential symmetries of the SDYM equation.
We examine the mechanical matrix model that can be derived from the SU(2) Yang-Mills light-cone field theory by restricting the gauge fields to depend on the light-cone time alone. We use Diracs generalized Hamiltonian approach. In contrast to its well-known instant-time counterpart the light-cone version of SU(2) Yang-Mills mechanics has in addition to the constraints, generating the SU(2) gauge transformations, the new first and second class constraints also. On account of all of these constraints a complete reduction in number of the degrees of freedom is performed. It is argued that the classical evolution of the unconstrained degrees of freedom is equivalent to a free one-dimensional particle dynamics. Considering the complex solutions to the second class constraints we show at this time that the unconstrained Hamiltonian system represents the well-known model of conformal mechanics with a ``strength of the inverse square interaction determined by the value of the gauge field spin.
We show how to lift solutions of Euclidean Einstein-Maxwell equations with non-zero cosmological constant to solutions of eleven-dimensional supergravity theory with non-zero fluxes. This yields a class of 11D metrics given in terms of solutions to $SU(infty)$ Toda equation. We give one example of a regular solution and analyse its supersymmetry. We also analyse the integrability conditions of the Killing spinor equations of N=2 minimal gauged supergravity in four Euclidean dimensions. We obtain necessary conditions for the existence of additional Killing spinors, corresponding to enhancement of supersymmetry. If the Weyl tensor is anti-self-dual then the supersymmetric metrics satisfying these conditions are given by separable solutions to the $SU(infty)$ Toda equation. Otherwise they are ambi-Kahler and are conformally equivalent to Kahler metrics of Calabi type or to product metrics on two Riemann surfaces.
132 - D.G. Pak , Takuya Tsukioka 2020
Color confinement is the most puzzling phenomenon in the theory of strong interaction based on a quantum SU(3) Yang-Mills theory. The origin of color confinement supposed to be intimately related to non-perturbative features of the non-Abelian gauge theory, and touches very foundations of the theory. We revise basic concepts underlying QCD concentrating mainly on concepts of gluons and quarks and color structure of quantum states. Our main idea is that a Weyl symmetry is the only color symmetry which determines all color attributes of quantum states and physical observables. We construct an ansatz for classical Weyl symmetric dynamical solutions in SU(3) Yang-Mills theory which describe one particle color singlet quantum states for gluons and quarks. Abelian Weyl symmetric solutions provide microscopic structure of a color invariant vacuum and vacuum gluon condensates. This resolves a problem of existence of a gauge invariant and stable vacuum in QCD. Generalization of our consideration to SU(N) (N=4,5) Yang-Mills theory implies that the color confinement phase is possible only in SU(3) Yang-Mills theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا