Do you want to publish a course? Click here

Color structure of quantum SU(N) Yang-Mills theory

133   0   0.0 ( 0 )
 Added by Dmitriy Pak
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Color confinement is the most puzzling phenomenon in the theory of strong interaction based on a quantum SU(3) Yang-Mills theory. The origin of color confinement supposed to be intimately related to non-perturbative features of the non-Abelian gauge theory, and touches very foundations of the theory. We revise basic concepts underlying QCD concentrating mainly on concepts of gluons and quarks and color structure of quantum states. Our main idea is that a Weyl symmetry is the only color symmetry which determines all color attributes of quantum states and physical observables. We construct an ansatz for classical Weyl symmetric dynamical solutions in SU(3) Yang-Mills theory which describe one particle color singlet quantum states for gluons and quarks. Abelian Weyl symmetric solutions provide microscopic structure of a color invariant vacuum and vacuum gluon condensates. This resolves a problem of existence of a gauge invariant and stable vacuum in QCD. Generalization of our consideration to SU(N) (N=4,5) Yang-Mills theory implies that the color confinement phase is possible only in SU(3) Yang-Mills theory.



rate research

Read More

We consider two fundamental long-standing problems in quantum chromodynamics (QCD): the origin of color confinement and structure of a true vacuum and color singlet quantum states. There is a common belief that resolution to these problems needs a knowledge of a strict non-perturbative quantum Yang-Mills theory and new ideas. Our principal idea in resolving these problems is that structure of color confinement and color singlet quantum states must be determined by a Weyl symmetry which is an intrinsic symmetry of the Yang-Mills gauge theory, and by properties of a selected class of solutions satisfying special requirements. Following this idea we construct for the first time a space of color singlet one particle quantum states for primary gluons and quarks and reveal the structure of color confinement in quantum Yang-Mills theory. As an application we demonstrate formation of physical observables in a pure QCD, pure glueballs.
A microscopic description of vacuum structure and color singlet quantum states in Yang-Mills theory is presented. Our approach is based on an idea that classical stationary solutions defining a Hilbert space of one particle quantum states possess quantum stability and symmetry under Weyl color group transformations. We demonstrate that Weyl symmetry and stability condition provide color singlet states and reveals the origin of color confinement in $SU(3)$ quantum Yang-Mills theory.
We consider double-winding, triple-winding and multiple-winding Wilson loops in the $SU(N)$ Yang-Mills gauge theory. We examine how the area law falloff of the vacuum expectation value of a multiple-winding Wilson loop depends on the number of color $N$. In sharp contrast to the difference-of-areas law recently found for a double-winding $SU(2)$ Wilson loop average, we show irrespective of the spacetime dimensionality that a double-winding $SU(3)$ Wilson loop follows a novel area law which is neither difference-of-areas nor sum-of-areas law for the area law falloff and that the difference-of-areas law is excluded and the sum-of-areas law is allowed for $SU(N)$ ($N ge 4$), provided that the string tension obeys the Casimir scaling for the higher representations. Moreover, we extend these results to arbitrary multi-winding Wilson loops. Finally, we argue that the area law follows a novel law, which is neither sum-of-areas nor difference-of-areas law when $Nge 3$. In fact, such a behavior is exactly derived in the $SU(N)$ Yang-Mills theory in the two-dimensional spacetime.
172 - Alexander D. Popov 2008
It is well known that there are no static non-Abelian monopole solutions in pure Yang-Mills theory on Minkowski space R^{3,1}. We show that such solutions exist in SU(N) gauge theory on the spaces R^2times S^2 and R^1times S^1times S^2 with Minkowski signature (-+++). In the temporal gauge they are solutions of pure Yang-Mills theory on T^1times S^2, where T^1 is R^1 or S^1. Namely, imposing SO(3)-invariance and some reality conditions, we consistently reduce the Yang-Mills model on the above spaces to a non-Abelian analog of the phi^4 kink model whose static solutions give SU(N) monopole (-antimonopole) configurations on the space R^{1,1}times S^2 via the above-mentioned correspondence. These solutions can also be considered as instanton configurations of Yang-Mills theory in 2+1 dimensions. The kink model on R^1times S^1 admits also periodic sphaleron-type solutions describing chains of n kink-antikink pairs spaced around the circle S^1 with arbitrary n>0. They correspond to chains of n static monopole-antimonopole pairs on the space R^1times S^1times S^2 which can also be interpreted as instanton configurations in 2+1 dimensional pure Yang-Mills theory at finite temperature (thermal time circle). We also describe similar solutions in Euclidean SU(N) gauge theory on S^1times S^3 interpreted as chains of n instanton-antiinstanton pairs.
We study the domain walls in hot $4$-D $SU(N)$ super Yang-Mills theory and QCD(adj), with $n_f$ Weyl flavors. We find that the $k$-wall worldvolume theory is $2$-D QCD with gauge group $SU(N-k)times SU(k) times U(1)$ and Dirac fermions charged under $U(1)$ and transforming in the bi-fundamental representation of the nonabelian factors. We show that the DW theory has a $1$-form $mathbb Z_{N}^{(1)}$ center symmetry and a $0$-form $mathbb Z_{2Nn_f}^{dchi}$ discrete chiral symmetry, with a mixed t Hooft anomaly consistent with bulk/wall anomaly inflow. We argue that $mathbb Z_{N}^{(1)}$ is broken on the wall, and hence, Wilson loops obey the perimeter law. The breaking of the worldvolume center symmetry implies that bulk $p$-strings can end on the wall, a phenomenon first discovered using string-theoretic constructions. We invoke $2$-D bosonization and gauged Wess-Zumino-Witten models to suggest that $mathbb Z_{2Nn_f}^{dchi}$ is also broken in the IR, which implies that the $0$-form/$1$-form mixed t Hooft anomaly in the gapped $k$-wall theory is saturated by a topological quantum field theory. We also find interesting parallels between the physics of high-temperature domain walls studied here and domain walls between chiral symmetry breaking vacua in the zero temperature phase of the theory (studied earlier in the semiclassically calculable small spatial circle regime), arising from the similar mode of saturation of the relevant t Hooft anomalies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا