Do you want to publish a course? Click here

Black Holes Coupled to a Massive Dilaton

255   0   0.0 ( 0 )
 Added by Jim Horne
 Publication date 1992
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate charged black holes coupled to a massive dilaton. It is shown that black holes which are large compared to the Compton wavelength of the dilaton resemble the Reissner-Nordstrom solution, while those which are smaller than this scale resemble the massless dilaton solutions. Black holes of order the Compton wavelength of the dilaton can have wormholes outside the event horizon in the string metric. Unlike all previous black hole solutions, nearly extremal and extremal black holes (of any size) repel each other. We argue that extremal black holes are quantum mechanically unstable to decay into several widely separated black holes. We present analytic arguments and extensive numerical results to support these conclusions.



rate research

Read More

151 - Anindya Biswas 2017
In this paper, we have studied the Hawking radiation of massive spin-$1$ particles from the black holes in $(2+1)$ dimensions with non- trivial dilaton fields. We consider two special varities of these black holes one is static charged and other is spinning electrically neutral. By applying the standard method of $WKB$ approximation and Hamilton- Jacobi ansatz we have shown the tunneling probability and Hawking temperature of massive bosons accordingly. In the certain limit of the dilaton coupling for spinning neutral case we have recovered the Hawking temperature of the $BTZ$ black holes as well.
The minimal Starobinsky supergravity with the inflaton (scalaron) and the goldstino in a massive vector supermultiplet is coupled to the dilaton-axion chiral superfield with the no-scale Kahler potential and a superpotential. The Kachru-Kallosh-Linde-Trivedi (KKLT)-type mechanism in the presence of a constant term in the superpotential is applied to stabilize the dilaton/axion during inflation, and it is shown to lead to an instability. The instability is cured by adding the alternative Fayet-Iliopoulos (FI) term that does not lead to the gauged $R$-symmetry. Other stabilization mechanisms, based on the Wess-Zumino (WZ)-type superpotential, are also studied in the presence of the FI term. A possible connection to a D3-brane is briefly discussed too.
It is shown that an arbitrarily small amount of angular momentum can qualitatively change the properties of extremal charged black holes coupled to a dilaton. In addition, the gyromagnetic ratio of these black holes is computed and an exact rotating black string solution is presented.
We present a class of charged black hole solutions in an ($n+2)$-dimensional massive gravity with a negative cosmological constant, and study thermodynamics and phase structure of the black hole solutions both in grand canonical ensemble and canonical ensemble. The black hole horizon can have a positive, zero or negative constant curvature characterized by constant $k$. By using Hamiltonian approach, we obtain conserved charges of the solutions and find black hole entropy still obeys the area formula and the gravitational field equation at the black hole horizon can be cast into the first law form of black hole thermodynamics. In grand canonical ensemble, we find that thermodynamics and phase structure depends on the combination $k -mu^2/4 +c_2 m^2$ in the four dimensional case, where $mu$ is the chemical potential and $c_2m^2$ is the coefficient of the second term in the potential associated with graviton mass. When it is positive, the Hawking-Page phase transition can happen, while as it is negative, the black hole is always thermodynamically stable with a positive capacity. In canonical ensemble, the combination turns out to be $k+c_2m^2$ in the four dimensional case. When it is positive, a first order phase transition can happen between small and large black holes if the charge is less than its critical one. In higher dimensional ($n+2 ge 5$) case, even when the charge is absent, the small/large black hole phase transition can also appear, the coefficients for the third ($c_3m^2$) and/or the fourth ($c_4m^2$) terms in the potential associated with graviton mass in the massive gravity can play the same role as the charge does in the four dimensional case.
The paper at hand studies the heat engine provided by black holes in the presence of massive gravity. The main motivation is to investigate the effects of massive gravity on different properties of the heat engine. It will be shown that massive gravity parameters and gravitons mass modify the efficiency of engine on a significant level. Furthermore, it will be shown that it is possible to have the heat engine for non-spherical black holes in massive gravity and we study the effects of topological factor on properties of the heat engine. Surprisingly, it will be shown that the highest efficiency for the heat engine belongs to black holes with hyperbolic horizon, while the lowest one belongs to spherical black holes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا