We calculate the mass of the lowest lying spin two glueball in N=1 super Yang-Mills from the dual Klebanov-Strassler background. We show that the Regge trajectory obtained is linear; the 0++, 1-- and 2++ states lie on a line of slope 0.23 -measured in units of the conifold deformation. We also compare mass ratios with lattice data and find agreement within one standard deviation.
Using techniques developed in a previous paper three-point functions in field theories described by holographic renormalization group flows are computed. We consider a system of one active scalar and one inert scalar coupled to gravity. For the GPPZ flow, their dual operators create states that are interpreted as glueballs of the N=1 SYM theory, which lies at the infrared end of the renormalization group flow. The scattering amplitudes for three-glueball processes are calculated providing precise predictions for glueball decays in N=1 SYM theory. Numerical results for low-lying glueballs are included.
The propagator of a physical degree of freedom ought to obey a K{a}ll{e}n-Lehmann spectral representation, with positive spectral density. The latter quantity is directly related to a cross section based on the optical theorem. The spectral density is a crucial ingredient of a quantum field theory with elementary and bound states, with a direct experimental connection as the masses of the excitations reflect themselves into (continuum) $delta$-singularities. In usual lattice simulational approaches to the QCD spectrum the spectral density itself is not accessed. The (bound state) masses are extracted from the asymptotic exponential decay of the two-point function. Given the importance of the spectral density, each nonperturbative continuum approach to QCD should be able to adequately describe it or to take into proper account. In this work, we wish to present a first trial in extracting an estimate for the scalar glueball spectral density in SU(3) gluodynamics using lattice gauge theory.
We study glueballs in the holographic gauge theories living in a curved space-time. The dual bulk is obtained as a solution of the type IIB superstring theory with two parameters, which correspond to four dimensional (4D) cosmological constant $lambda$ and the dark radiation $C$ respectively. The theory is in the confining phase for $lambda <0$ and small $C$, then we observe stable glueball states in this theory. However, the stability of the glueball states is lost when the density of the dark radiation ($C$) increases and exceeds a critical point. Above this point, the dark radiation works as the heat bath of the Yang-Mills theory since the event horizon appears. Thus the system is thermalized, and the theory is in a finite temperature deconfinement phase, namely in the QGP phase. We observe this transition process through the glueball spectra which varies dramatically with $C$. We also examined the entanglement entropy of the system to find a clue of this phase transition and the role of the dark radiation $C$ in the entanglement entropy.
The mixing between the $f_2(1270)$, the $f_2(1525)$, and the $2^{++}$ glueball is determined and tested. The mass and the hadronic decay widths of the $G_2$ and the branching ratio $B(J/psirightarrowgamma G_2)$ are predicted.