Do you want to publish a course? Click here

Open Strings on Plane waves and their Yang-Mills duals

282   0   0.0 ( 0 )
 Publication date 2002
  fields
and research's language is English




Ask ChatGPT about the research

We study the plane wave limit of $AdS_5times S^5/Z_2$ which arises as the near horizon geometry of D3-branes at an orientifold 7-plane in type I theory. We analyze string theory in the resulting plane wave background which contains open strings. We identify gauge invariant operators in the dual $Sp(N)$ gauge theory with unoriented closed and open string states.



rate research

Read More

This paper deals with various interrelations between strings and surfaces in three dimensional ambient space, two dimensional integrable models and two dimensional and four dimensional decomposed SU(2) Yang-Mills theories. Initially, a spinor version of the Frenet equation is introduced in order to describe the differential geometry of static three dimensional string-like structures. Then its relation to the structure of the su(2) Lie algebra valued Maurer-Cartan one-form is presented; while by introducing time evolution of the string a Lax pair is obtained, as an integrability condition. In addition, it is show how the Lax pair of the integrable nonlinear Schroedinger equation becomes embedded into the Lax pair of the time extended spinor Frenet equation and it is described how a spinor based projection operator formalism can be used to construct the conserved quantities, in the case of the nonlinear Schroedinger equation. Then the Lax pair structure of the time extended spinor Frenet equation is related to properties of flat connections in a two dimensional decomposed SU(2) Yang-Mills theory. In addition, the connection between the decomposed Yang-Mills and the Gauss-Godazzi equation that describes surfaces in three dimensional ambient space is presented. In that context the relation between isothermic surfaces and integrable models is discussed. Finally, the utility of the Cartan approach to differential geometry is considered. In particular, the similarities between the Cartan formalism and the structure of both two dimensional and four dimensional decomposed SU(2) Yang-Mills theories are discussed, while the description of two dimensional integrable models as embedded structures in the four dimensional decomposed SU(2) Yang-Mills theory are presented.
We study singular time-dependent $frac{1}{8}$-BPS configurations in the abelian sector of ${{mathcal N}= 4}$ supersymmetric Yang-Mills theory that represent BPS string-like defects in ${{mathbb R}times S^3}$ spacetime. Such BPS strings can be described as intersections of the zeros of holomorphic functions in two complex variables with a 3-sphere. We argue that these BPS strings map to $frac{1}{8}$-BPS surface operators under the state-operator correspondence of the CFT. We show that the string defects are holographically dual to noncompact probe D3-branes in global $AdS_5times S^5$ that share supersymmetries with a class of dual-giant gravitons. For simple configurations, we demonstrate how to define a good variational problem and propose a regularization scheme that leads to finite energy and global charges on both sides of the holographic correspondence.
110 - M. Billo , A DAdda , P. Provero 1999
We quantize pure 2d Yang-Mills theory on an arbitrary Riemann surface in the gauge where the field strength is diagonal. Twisted sectors originate, as in Matrix string theory, from permutations of the eigenvalues around homotopically non-trivial loops. These sectors, that must be discarded in the usual quantization due to divergences occurring when two eigenvalues coincide, can be consistently kept if one modifies the action by introducing a coupling of the field strength to the space-time curvature. This leads to a generalized Yang-Mills theory whose action reduces to the usual one in the limit of zero curvature. After integrating over the non-diagonal components of the gauge fields, the theory becomes a free string theory (sum over unbranched coverings) with a U(1) gauge theory on the world-sheet. This is shown to be equivalent to a lattice theory with a gauge group which is the semi-direct product of S_N and U(1)^N. By using well known results on the statistics of coverings, the partition function on arbitrary Riemann surfaces and the kernel functions on surfaces with boundaries are calculated. Extensions to include branch points and non-abelian groups on the world-sheet are briefly commented upon.
134 - Jay Armas , Akash Jain 2020
We formulate a theory of dissipative hydrodynamics with spontaneously broken translations, describing charge density waves in a clean isotropic electronic crystal. We identify a novel linear transport coefficient, lattice pressure, capturing the effects of background strain and thermal expansion in a crystal. We argue that lattice pressure is a generic feature of systems with spontaneously broken translations and must be accounted for while building and interpreting holographic models. We also provide the first calculation of the coefficients of thermal and chemical expansion in a holographic electronic crystal.
Inhomogeneous fluid flows which become supersonic are known to produce acoustic analogs of ergoregions and horizons. This leads to Hawking-like radiation of phonons with a temperature essentially given by the gradient of the velocity at the horizon. We find such acoustic dumb holes in charged conformal fluids and use the fluid-gravity correspondence to construct dual gravity solutions. A class of quasinormal modes around these gravitational backgrounds perceive a horizon. Upon quantization, this implies a thermal spectrum for these modes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا