No Arabic abstract
By looking at fractional Dp-branes of type IIA on T_4/Z_2 as wrapped branes and by using boundary state techniques we construct the effective low-energy action for the fields generated by fractional branes, build their world-volume action and find the corresponding classical geometry. The explicit form of the classical background is consistent only outside an enhancon sphere of radius r_e, which encloses a naked singularity of repulson-type. The perturbative running of the gauge coupling constant, dictated by the NS-NS twisted field that keeps its one-loop expression at any distance, also fails at r_e.
We investigate the classical geometry corresponding to a collection of fractional D3 branes in the orbifold limit of an ALE space. We discuss its interpretation in terms of the world-volume gauge theory on the branes, which is in general a non conformal N=2 Yang-Mills theory with matter. The twisted fields reproduce the perturbative behaviour of the gauge theory. We regulate the IR singularities for both twisted and untwisted fields by means of an enhancon mechanism qualitatively consistent with the gauge theory expectations. The five-form flux decreases logarithmically towards the IR with a coefficient dictated by the gauge theory beta-functions.
We derive the classical type IIB supergravity solution describing fractional D3-branes transverse to a C^2/Gamma orbifold singularity, for Gamma any Kleinian ADE subgroup. This solution fully describes the N=2 gauge theory with appropriate gauge groups and matter living on the branes, up to non-perturbative instanton contributions.
We show that the Gukov-Witten monodromy defects of supersymmetric Yang-Mills theory can be realized in perturbative string theory by considering an orbifold background of the Kanno-Tachikawa type and placing stacks of fractional D3-branes whose world-volume partially extends along the orbifold directions. In particular, we show that turning on a constant background value for some scalar fields in the closed string twisted sectors induces a non-trivial profile for the gauge field and one of the complex scalars of the world-volume theory, and that this profile exactly matches the singular behavior that one expects for a Gukov-Witten surface defect in the $mathcal{N}=4$ super Yang-Mills theory. To keep the presentation as simple as possible, in this work we restrict our analysis to surface defects corresponding to a $mathbb{Z}_2$ orbifold and defer the study of the most general case to a companion paper.
A generic half-BPS surface defect of ${mathcal N}=4$ supersymmetric U$(N)$ Yang-Mills theory is described by a partition of $N = n_1 + ldots + n_M$ and a set of $4M$ continuous parameters. We show that such a defect can be realized by $n_I$ stacks of fractional D3-branes in Type II B string theory on a $mathbb{Z}_M$ orbifold background in which the brane world-volume is partially extended along the orbifold directions. In this set up we show that the $4M$ continuous parameters correspond to constant background values of certain twisted closed string scalars of the orbifold. These results extend and generalize what we have presented for the simple defects in a previous paper.
We discuss fractional D3-branes on the orbifold C^3/Z_2*Z_2. We study the open and the closed string spectrum on this orbifold. The corresponding N=1 theory on the brane has, generically, a U(N_1)*U(N_2)*U(N_3)*U(N_4) gauge group with matter in the bifundamental. In particular, when only one type of brane is present, one obtains pure N=1 Yang-Mills. We study the coupling of the branes to the bulk fields and present the corresponding supergravity solution, valid at large distances. By using a probe analysis, we are able to obtain the Wilsonian beta-function for those gauge theories that possess some chiral multiplet. Although, due to the lack of moduli, the probe technique is not directly applicable to the case of pure N=1 Yang-Mills, we point out that the same formula gives the correct result also for this case.