No Arabic abstract
In this paper we present a construction of a new class of explicit solutions to the WDVV (or associativity) equations. Our construction is based on a relationship between the WDVV equations and Whitham (or modulation) equations. Whitham equations appear in the perturbation theory of exact algebro-geometric solutions of soliton equations and are defined on the moduli space of algebraic curves with some extra algebro-geometric data. It was first observed by Krichever that for curves of genus zero the tau-function of a ``universal Whitham hierarchy gives a solution to the WDVV equations. This construction was later extended by Dubrovin and Krichever to algebraic curves of higher genus. Such extension depends on the choice of a normalization for the corresponding Whitham differentials. Traditionally only complex normalization (or the normalization w.r.t. a-cycles) was considered. In this paper we generalize the above construction to the real-normalized case.
We show that reductions of KP hierarchies related to the loop algebra of $SL_n$ with homogeneous gradation give solutions of the Darboux-Egoroff system of PDEs. Using explicit dressing matrices of the Riemann-Hilbert problem generalized to include a set of commuting additional symmetries, we construct solutions of the Witten--Dijkgraaf--E. Verlinde--H. Verlinde equations.
We consider the associativity (or WDVV) equations in the form they appear in Seiberg-Witten theory and prove that they are covariant under generic electric-magnetic duality transformations. We discuss the consequences of this covariance from various perspectives.
N=4 superconformal multi-particle quantum mechanics on the real line is governed by two prepotentials, U and F, which obey a system of partial differential equations linear in U and generalizing the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equation for F. Putting U=0 yields a class of models (with zero central charge) which are encoded by the finite Coxeter root systems. We extend these WDVV solutions F in two ways: the A_n system is deformed n-parametrically to the edge set of a general orthocentric n-simplex, and the BCF-type systems form one-parameter families. A classification strategy is proposed. A nonzero central charge requires turning on U in a given F background, which we show is outside of reach of the standard root-system ansatz for indecomposable systems of more than three particles. In the three-body case, however, this ansatz can be generalized to establish a series of nontrivial models based on the dihedral groups I_2(p), which are permutation symmetric if 3 divides p. We explicitly present their full prepotentials.
We show that the Killing spinor equations of all supergravity theories which may include higher order corrections on a (r,s)-signature spacetime are associated with twisted covariant form hierarchies. These hierarchies are characterized by a connection on the space of forms which may not be degree preserving. As a consequence we demonstrate that the form Killing spinor bi-linears of all supersymmetric backgrounds satisfy a suitable generalization of conformal Killing-Yano equation with respect to this connection. To illustrate the general proof the twisted covariant form hierarchies of some supergravity theories in 4, 5, 6, 10 and 11 dimensions are also presented.
Following a question of K. Hori at K. Fukayas 60th birthday conference, we relate the recently established WDVV-type relations for real Gromov-Witten invariants to topological recursion relations in a real setting. We also describe precisely the connections between the relations themselves previously observed by A. Alcolado.