Do you want to publish a course? Click here

Electric-Magnetic Duality and WDVV Equations

47   0   0.0 ( 0 )
 Added by Bernard de Wit
 Publication date 2001
  fields
and research's language is English




Ask ChatGPT about the research

We consider the associativity (or WDVV) equations in the form they appear in Seiberg-Witten theory and prove that they are covariant under generic electric-magnetic duality transformations. We discuss the consequences of this covariance from various perspectives.



rate research

Read More

N=4 superconformal multi-particle quantum mechanics on the real line is governed by two prepotentials, U and F, which obey a system of partial differential equations linear in U and generalizing the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equation for F. Putting U=0 yields a class of models (with zero central charge) which are encoded by the finite Coxeter root systems. We extend these WDVV solutions F in two ways: the A_n system is deformed n-parametrically to the edge set of a general orthocentric n-simplex, and the BCF-type systems form one-parameter families. A classification strategy is proposed. A nonzero central charge requires turning on U in a given F background, which we show is outside of reach of the standard root-system ansatz for indecomposable systems of more than three particles. In the three-body case, however, this ansatz can be generalized to establish a series of nontrivial models based on the dihedral groups I_2(p), which are permutation symmetric if 3 divides p. We explicitly present their full prepotentials.
272 - Anton Dzhamay 2000
In this paper we present a construction of a new class of explicit solutions to the WDVV (or associativity) equations. Our construction is based on a relationship between the WDVV equations and Whitham (or modulation) equations. Whitham equations appear in the perturbation theory of exact algebro-geometric solutions of soliton equations and are defined on the moduli space of algebraic curves with some extra algebro-geometric data. It was first observed by Krichever that for curves of genus zero the tau-function of a ``universal Whitham hierarchy gives a solution to the WDVV equations. This construction was later extended by Dubrovin and Krichever to algebraic curves of higher genus. Such extension depends on the choice of a normalization for the corresponding Whitham differentials. Traditionally only complex normalization (or the normalization w.r.t. a-cycles) was considered. In this paper we generalize the above construction to the real-normalized case.
We show that reductions of KP hierarchies related to the loop algebra of $SL_n$ with homogeneous gradation give solutions of the Darboux-Egoroff system of PDEs. Using explicit dressing matrices of the Riemann-Hilbert problem generalized to include a set of commuting additional symmetries, we construct solutions of the Witten--Dijkgraaf--E. Verlinde--H. Verlinde equations.
We investigate integrability of Euler-Lagrange equations associated with 2D second-order Lagrangians of the form begin{equation*} int f(u_{xx},u_{xy},u_{yy}) dxdy. end{equation*} By deriving integrability conditions for the Lagrangian density $f$, examples of integrable Lagrangians expressible via elementary functions, Jacobi theta functions and dilogarithms are constructed. A link of second-order integrable Lagrangians to WDVV equations is established. Generalisations to 3D second-order integrable Lagrangians are also discussed.
148 - M.V. Pavlov , R.F. Vitolo 2014
We consider the WDVV associativity equations in the four dimensional case. These nonlinear equations of third order can be written as a pair of six component commuting two-dimensional non-diagonalizable hydrodynamic type systems. We prove that these systems possess a compatible pair of local homogeneous Hamiltonian structures of Dubrovin--Novikov type (of first and third order, respectively).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا