We show how to obtain a ``heavy meson effective lagrangian for the case where the number of heavy particles is not conserved. We apply the method in a simple example at tree level and perform then the reduction for the case of vector mesons in Chiral Perturbation Theory in a manifestly chiral invariant fashion. Some examples showing that ``heavy meson effective theory also works at the one-loop level are included.
We discuss the vector meson masses within the context of Chiral Perturbation Theory performing an expansion in terms of the momenta, quark masses and 1/Nc. We extend the previous analysis to include isospin breaking effects and also include up to order $p^4$. We discuss vector meson chiral perturbation theory in some detail and present a derivation from a relativistic lagrangian. The unknown coefficients are estimated in various ways. We also discuss the relevance of electromagnetic corrections and the implications of the present calculation for the determination of quark masses.
We study the strange vector meson ($K^*, bar K^*$) dynamics in relativistic heavy-ion collisions based on the microscopic Parton-Hadron-String Dynamics (PHSD) transport approach which incorporates partonic and hadronic degrees-of-freedom, a phase transition from hadronic to partonic matter - Quark-Gluon-Plasma (QGP) - and a dynamical hadronization of quarks and antiquarks as well as final hadronic interactions. We investigate the role of in-medium effects on the $K^*, bar K^*$ meson dynamics by employing Breit-Wigner spectral functions for the $K^*$s with self-energies obtained from a self-consistent coupled-channel G-matrix approach. Furthermore, we confront the PHSD calculations with experimental data for p+p, Cu+Cu and Au+Au collisions at energies up to $sqrt{{s}_{NN}} = 200$~GeV. Our analysis shows that at relativistic energies most of the final $K^*$s (observed experimentally) are produced during the late hadronic phase, dominantly by the $K+ pi to K^*$ channel, such that the fraction of the $K^*$s from the QGP is small and can hardly be reconstructed from the final observables. The influence of the in-medium effects on the $K^*$ dynamics at RHIC energies is rather modest due to their dominant production at low baryon densities (but high meson densities), however, it increases with decreasing beam energy. Moreover, we find that the additional cut on the invariant mass region of the $K^*$ further influences the shape and the height of the final spectra. This imposes severe constraints on the interpretation of the experimental results.
We present results for higher-order corrections to exclusive $mathrm{J}/psi$ production. This includes the first relativistic correction of order $v^2$ in quark velocity, and next-to-leading order corrections in $alpha_s$ for longitudinally polarized production. The relativistic corrections are found to be important for a good description of the HERA data, especially at small values of the photon virtuality. The next-to-leading order results for longitudinal production are evaluated numerically. We also demonstrate how the vector meson production provides complementary information to the structure functions for extracting the initial condition for the small-$x$ evolution of the dipole-proton scattering amplitude.
We consider the fidelity of the vector meson dominance (VMD) assumption as an instrument for relating the electromagnetic vector-meson production reaction $e + p to e^prime + V + p$ to the purely hadronic process $V + p to V+p$. Analyses of the photon vacuum polarisation and the photon-quark vertex reveal that such a VMD Ansatz might be reasonable for light vector-mesons. However, when the vector-mesons are described by momentum-dependent bound-state amplitudes, VMD fails for heavy vector-mesons: it cannot be used reliably to estimate either a photon-to-vector-meson transition strength or the momentum dependence of those integrands that would arise in calculations of the different reaction amplitudes. Consequently, for processes involving heavy mesons, the veracity of both cross-section estimates and conclusions based on the VMD assumption should be reviewed, e.g., those relating to hidden-charm pentaquark production and the origin of the proton mass.
We compute the exclusive electroproduction, $gamma^* p rightarrow V p$, of heavy quarkonia $V$ to NLO in the collinear factorisation scheme, which has been formally proven for this process. The inclusion of an off-shell virtuality $Q^2$ carried by the photon extends the photoproduction phase space of the exclusive heavy quarkonia observable to electroproduction kinematics. This process is relevant for diffractive scattering at HERA and the upcoming EIC, as well as at the proposed LHeC and FCC.