Do you want to publish a course? Click here

Vector Meson Masses in Chiral Perturbation Theory

380   0   0.0 ( 0 )
 Added by Peter Gosdzinsky
 Publication date 1997
  fields
and research's language is English




Ask ChatGPT about the research

We discuss the vector meson masses within the context of Chiral Perturbation Theory performing an expansion in terms of the momenta, quark masses and 1/Nc. We extend the previous analysis to include isospin breaking effects and also include up to order $p^4$. We discuss vector meson chiral perturbation theory in some detail and present a derivation from a relativistic lagrangian. The unknown coefficients are estimated in various ways. We also discuss the relevance of electromagnetic corrections and the implications of the present calculation for the determination of quark masses.



rate research

Read More

62 - S. Aoki , O. Baer , S. Takeda 2006
We calculate the vector meson masses in $N_{rm f} = 2+1$ Wilson chiral perturbation theory at next-to-leading order. Generalizing the framework of heavy vector meson chiral perturbation theory, the quark mass and the lattice cutoff dependence of the vector meson masses is derived. Our chiral order counting assumes that the lattice cut-off artifacts are of the order of the typical pion momenta, $p sim aLambda_{rm QCD}^{2}$. This counting scheme is consistent with the one in the pseudo scalar meson sector where the O($a^2$) terms are included in the leading order chiral Lagrangian.
We show that the multicomponent meson systems can be described by chiral perturbation theory. We chiefly focus on a system of two pion gases at different isospin chemical potential, deriving the general expression of the chiral Lagrangian, the ground state properties and the spectrum of the low-energy excitations. We consider two different kinds of interactions between the two meson gases: one which does not lock the two chiral symmetry groups and one which does lock them. The former is a kind of interaction that has already been discussed in mutlicomponent superfluids. The latter is perhaps more interesting, because seems to be related to an instability. Although the pressure of the system does not show any instability, we find that for sufficiently strong locking, the spectrum of one Bogolyubov mode becomes tachyonic. This unstable branch seems to indicate a transition to an inhomogeneous phase.
A comparison of the linear sigma model (L$sigma$M) and Chiral Perturbation Theory (ChPT) predictions for pion and kaon dynamics is presented. Lowest and next-to-leading order terms in the ChPT amplitudes are reproduced if one restricts to scalar resonance exchange. Some low energy constants of the order $p^4$ ChPT Lagrangian are fixed in terms of scalar meson masses. Present values of these low energy constants are compatible with the L$sigma$M dynamics. We conclude that more accurate values would be most useful either to falsify the L$sigma$M or to show its capability to shed some light on the controversial scalar physics.
67 - S. Aoki , O. Baer , T. Ishikawa 2005
We consider 2+1 flavor Wilson Chiral Perturbation Theory including the lattice spacing contributions of O($a^{2}$). We adopt a power counting appropriate for the unquenched lattice simulations carried out by the CP-PACS/JLQCD collaboration and compute the pseudo scalar meson masses to one loop. These expression are required to perform the chiral extrapolation of the CP-PACS/JLQCD lattice data.
We present a comprehensive analysis of form factors for two light pseudoscalar mesons induced by scalar, vector, and tensor quark operators. The theoretical framework is based on a combination of unitarized chiral perturbation theory and dispersion relations. The low-energy constants in chiral perturbation theory are fixed by a global fit to the available data of the two-meson scattering phase shifts. Each form factor derived from unitarized chiral perturbation theory is improved by iteratively applying a dispersion relation. This study updates the existing results in the literature and explores those that have not been systematically studied previously, in particular the two-meson tensor form factors within unitarized chiral perturbation theory. We also discuss the applications of these form factors as mandatory inputs for low-energy phenomena, such as the semi-leptonic decays $B_sto pi^+pi^-ell^+ell^-$ and the $tau$ lepton decay $taurightarrowpi^{-}pi^{0} u_{tau}$, in searches for physics beyond the Standard Model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا