Do you want to publish a course? Click here

Semileptonic Decay of $B$-Meson into $D^{**}$ and the Bjorken Sum Rule

88   0   0.0 ( 0 )
 Added by Tuyoshi B. suzuki
 Publication date 1996
  fields
and research's language is English




Ask ChatGPT about the research

We study the semileptonic branching fraction of $B$-meson into higher resonance of charmed meson $D^{**}$ by using the Bjorken sum rule and the heavy quark effective theory(HQET). This sum rule and the current experiment of $B$-meson semileptonic decay into $D$ and $D^*$ predict that the branching ratio into $D^{**}l u_l$ is about 1.7%. This predicted value is larger than the value obtained by the various theoretical hadron models based on the HQET.



rate research

Read More

We present an update of our calculations of the decay constants of the D, D_s, B, and B_s mesons in unquenched 2+1 flavor QCD. We use the MILC library of improved staggered gauge ensembles at lattice spacings 0.09, 0.12, and 0.15 fm, clover heavy quarks with the Fermilab normalizations, and improved staggered light valence quarks.
97 - Marina Artuso 2003
B meson semileptonic decays are a crucial tool in our studies of the quark mixing parameters Vcb and Vub. The interplay between experimental and theoretical challenges to achieve precision in the determination of these fundamental parameters is discussed.
We study the polarized Bjorken sum rule at low momentum transfers in the range $0.22<Q<1.73 {rm GeV}$ with the four-loop N$^3$LO expression for the coefficient function $C_{rm Bj}(alpha_s)$ in the framework of the common QCD perturbation theory (PT) and the singularity-free analytic perturbation theory (APT). The analysis of the PT series for $C_{rm Bj}(alpha_s)$ gives a hint to its asymptotic nature manifesting itself in the region $Q<1$ GeV. It relates to the observation that the accuracy of both the three- and four-loop PT predictions happens to be at the same 10% level. On the other hand, the usage of the two-loop APT allows one to describe the precise low energy JLab data down to $Qsim 300$ MeV and gives a possibility for reliable extraction of the higher twist (HT) corrections. At the same time, above $Qsim 700$ MeV the APT two-loop order with HT is equivalent to the four-loop PT with HT compatible to zero and is adequate to current accuracy of the data.
60 - Qing Yu , Xing-Gang Wu , Hua Zhou 2021
In the present paper, we first give a detailed study on the pQCD corrections to the leading-twist part of BSR. Previous pQCD corrections to the leading-twist part derived under conventional scale-setting approach up to ${cal O}(alpha_s^4)$-level still show strong renormalization scale dependence. The principle of maximum conformality (PMC) provides a systematic way to eliminate conventional renormalization scale-setting ambiguity by determining the accurate $alpha_s$-running behavior of the process with the help of renormalization group equation. Our calculation confirms the PMC prediction satisfies the standard renormalization group invariance, e.g. its fixed-order prediction does scheme-and-scale independent. In low $Q^2$-region, the effective momentum of the process is small and to have a reliable prediction, we adopt four low-energy $alpha_s$ models to do the analysis. Our predictions show that even though the high-twist terms are generally power suppressed in high $Q^2$-region, they shall have sizable contributions in low and intermediate $Q^2$ domain. By using the more accurate scheme-and-scale independent pQCD prediction, we present a novel fit of the non-perturbative high-twist contributions by comparing with the JLab data.
We discuss preliminary results for the vector form factors $f_+^{{pi,K}}$ at zero-momentum transfer for the decays $Dtopiell u$ and $Dto K ell u$ using MILCs $N_f = 2+1+1$ HISQ ensembles at four lattice spacings, $a approx 0.042, 0.06, 0.09$, and 0.12 fm, and various HISQ quark masses down to the (degenerate) physical light quark mass. We use the kinematic constraint $f_+(q^2)= f_0(q^2)$ at $q^2 = 0$ to determine the vector form factor from our study of the scalar current, which yields $f_0(0)$. Results are extrapolated to the continuum physical point in the framework of hard pion/kaon SU(3) heavy-meson-staggered $chi$PT and Symanzik effective theory. Our calculation improves upon the precision achieved in existing lattice-QCD calculations of the vector form factors at $q^2=0$. We show the values of the CKM matrix elements $|V_{cs}|$ and $|V_{cd}|$ that we would obtain using our preliminary results for the form factors together with recent experimental results, and discuss the implications of these values for the second row CKM unitarity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا