Do you want to publish a course? Click here

$D$ meson Semileptonic Decay Form Factors at $q^2 = 0$

142   0   0.0 ( 0 )
 Added by Ruizi Li
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We discuss preliminary results for the vector form factors $f_+^{{pi,K}}$ at zero-momentum transfer for the decays $Dtopiell u$ and $Dto K ell u$ using MILCs $N_f = 2+1+1$ HISQ ensembles at four lattice spacings, $a approx 0.042, 0.06, 0.09$, and 0.12 fm, and various HISQ quark masses down to the (degenerate) physical light quark mass. We use the kinematic constraint $f_+(q^2)= f_0(q^2)$ at $q^2 = 0$ to determine the vector form factor from our study of the scalar current, which yields $f_0(0)$. Results are extrapolated to the continuum physical point in the framework of hard pion/kaon SU(3) heavy-meson-staggered $chi$PT and Symanzik effective theory. Our calculation improves upon the precision achieved in existing lattice-QCD calculations of the vector form factors at $q^2=0$. We show the values of the CKM matrix elements $|V_{cs}|$ and $|V_{cd}|$ that we would obtain using our preliminary results for the form factors together with recent experimental results, and discuss the implications of these values for the second row CKM unitarity.



rate research

Read More

The semileptonic process, B --> pi l u, is studied via full QCD Lattice simulations. We use unquenched gauge configurations generated by the MILC collaboration. These include the effect of vacuum polarization from three quark flavors: the $s$ quark and two very light flavors ($u/d$) of variable mass allowing extrapolations to the physical chiral limit. We employ Nonrelativistic QCD to simulate the $b$ quark and a highly improved staggered quark action for the light sea and valence quarks. We calculate the form factors $f_+(q^2)$ and $f_0(q^2)$ in the chiral limit for the range 16 GeV$^2 leq q^2 < q^2_{max}$ and obtain $int^{q^2_{max}}_{16 GeV^2} [dGamma/dq^2] dq^2 / |v_{ub}|^2 = 1.46(35) ps^{-1}$. Combining this with a preliminary average by the Heavy Flavor Averaging Group (HFAG05) of recent branching fraction data for exclusive B semileptonic decays from the BaBar, Belle and CLEO collaborations, leads to $|V_{ub}| = 4.22(30)(51) times 10^{-3}$. PLEASE NOTE APPENDIX B with an ERRATUM, to appear in Physical Review D, to the published version of this e-print (Phys.Rev.D 73, 074502 (2006)). Results for the form factor $f_+(q^2)$ in the chiral limit have changed significantly. The last two sentences in this abstract should now read; We calculate the form factor $f_+(q^2)$ and $f_0(q^2)$ in the chiral limit for the range 16 Gev$^2 leq q^2 < q^2_{max}$ and obtain $int^{q^2_{max}}_{16 GeV^2} [dGamma/dq^2] dq^2 / |V_{ub}|^2 = 2.07(57)ps^{-1}$. Combining this with a preliminary average by the Heavy Flavor Averagibg Group (HFAG05) of recent branching fraction data for exclusive B semileptonic decays from the BaBar, Belle and CLEO collaborations, leads to $|V_{ub}| = 3.55(25)(50) times 10^{-3}$.
Measurements and theoretical calculations of meson form factors are essential for our understanding of internal hadron structure and QCD, the dynamics that bind the quarks in hadrons. The pion electromagnetic form factor has been measured at small space-like momentum transfer $|q^2| < 0.3$~GeV$^2$ by pion scattering from atomic electrons and at values up to $2.5$~GeV$^2$ by scattering electrons from the pion cloud around a proton. On the other hand, in the limit of very large (or infinite) $Q^2=-q^2$, perturbation theory is applicable. This leaves a gap in the intermediate $Q^2$ where the form factors are not known. As a part of their 12 GeV upgrade Jefferson Lab will measure pion and kaon form factors in this intermediate region, up to $Q^2$ of $6$~GeV$^2$. This is then an ideal opportunity for lattice QCD to make an accurate prediction ahead of the experimental results. Lattice QCD provides a from-first-principles approach to calculate form factors, and the challenge here is to control the statistical and systematic uncertainties as errors grow when going to higher $Q^2$ values. Here we report on a calculation that tests the method using an $eta_s$ meson, a heavy pion made of strange quarks, and also present preliminary results for kaon and pion form factors. We use the $n_f=2+1+1$ ensembles made by the MILC collaboration and Highly Improved Staggered Quarks, which allows us to obtain high statistics. The HISQ action is also designed to have small discretisation errors. Using several light quark masses and lattice spacings allows us to control the chiral and continuum extrapolation and keep systematic errors in check.
We calculate, in the continuum limit of quenched lattice QCD, the matrix elements of the heavy-heavy vector current between heavy-light pseudoscalar meson states. We present the form factors for different values of the initial and final meson masses at finite momentum transfer. In particular, we calculate the non-perturbative correction to the differential decay rate of the process B --> D l nu including the case of a non-vanishing lepton mass.
We report recent progress in calculating semileptonic form factors for the $bar{B} to D^ast ell bar{ u}$ and $bar{B} to D ell bar{ u}$ decays using the Oktay-Kronfeld (OK) action for bottom and charm quarks. We use the second order in heavy quark effective power counting $mathcal{O}(lambda^2)$ improved currents in this work. The HISQ action is used for the light spectator quarks. We analyzed four $2+1+1$-flavor MILC HISQ ensembles with $aapprox 0.09,mathrm{fm}$, $0.12,mathrm{fm}$ and $M_pi approx 220,mathrm{MeV}$, $310,mathrm{MeV}$: $a09m220$, $a09m310$, $a12m220$, $a12m310$. Preliminary results for $Bto D^astell u$ decays form factor $h_{A_1}(w)$ at zero recoil ($w=1$) are reported. Preliminary results for $B to D,ell u$ decays form factors $h_pm(w)$ over a kinematic range $1<w<1.3$ are reported as well.
We discuss our ongoing effort to calculate form factors for several B and Bs semileptonic decays. We have recently completed the first unquenched calculation of the form factors for the rare decay B -> K ll. Extrapolated over the full kinematic range of q^2 via model-independent z expansion, these form factor results allow us to calculate several Standard Model observables. We compare with experiment (Belle, BABAR, CDF, and LHCb) where possible and make predictions elsewhere. We discuss preliminary results for Bs -> K l nu which, when combined with anticipated experimental results, will provide an alternative exclusive determination of |Vub|. We are exploring the possibility of using ratios of form factors for this decay with those for the unphysical decay Bs -> eta_s as a means of significantly reducing form factor errors. We are also studying B -> pi l nu, form factors for which are combined with experiment in the standard exclusive determination of |Vub|. Our simulations use NRQCD heavy and HISQ light valence quarks on the MILC 2+1 dynamical asqtad configurations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا