Do you want to publish a course? Click here

Neutron Electric Dipole Moment in the Minimal Supersymmetric Standard Model

59   0   0.0 ( 0 )
 Added by Tomoyuki Inui
 Publication date 1995
  fields
and research's language is English




Ask ChatGPT about the research

Neutron electric dipole moment (EDM) due to single quark EDM and to the transition EDM is calculated in the minimal supersymmetric standard model. Assuming that the Cabibbo-Kobayashi-Maskawa matrix at the grand unification scale is the only source of CP violation, complex phases are induced in parameters of soft supersymmetry breaking at low energies. Chargino one-loop diagram is found to give the dominant contribution of the order of $10^{-27}sim 10^{-29}:ecdot$cm for quark EDM, assuming the light chargino mass and the universal scalar mass to be $50$ GeV and $100$ GeV, respectively. Therefore the neutron EDM in this class of model is difficult to measure experimentally. Gluino one-loop diagram also contributes due to the flavor changing gluino coupling. The transition EDM is found to give dominant contributions for certain parameter regions.



rate research

Read More

68 - G. De Conto , V. Pleitez 2016
We calculate the electric dipole moment (EDM) for the neutron in the framework of the minimal 3-3-1 model. We assume that the only source of $CP$ violation arises from a complex trilinear coupling constant and two complex vacuum expectation values. However, from the constraint equations obtained from the potential, only one physical phase remains. We find some constraints on the possible values of this phase and masses of the exotic particles.
The connection between a regularization-independent symmetric momentum substraction (RI-$tilde{rm S}$MOM) and the $overline{rm MS}$ scheme for the quark chromo EDM operators is discussed. A method for evaluating the neutron EDM from quark chromoEDM is described. A preliminary study of the signal in the matrix element using clover quarks on a highly improved staggered quark (HISQ) ensemble is shown.
Considering the CP violating phases, we analyze the neutron electric dipole moment (EDM) in a CP violating supersymmetric extension of the standard model where baryon and lepton numbers are local gauge symmetries(BLMSSM). The contributions from the one loop diagrams and the Weinberg operators are taken into account. Adopting some assumptions on the relevant parameter space, we give the numerical results analysis. The numerical results for neutron EDM can reach $1.05times 10^{-25}(e.cm)$, which is about the experimental upper limit.
We compute the electric dipole moment of nucleons in the large $N_c$ QCD model by Witten, Sakai and Sugimoto with $N_f=2$ degenerate massive flavors. Baryons in the model are instantonic solitons of an effective five-dimensional action describing the whole tower of mesonic fields. We find that the dipole electromagnetic form factor of the nucleons, induced by a finite topological $theta$ angle, exhibits complete vector meson dominance. We are able to evaluate the contribution of each vector meson to the final result - a small number of modes are relevant to obtain an accurate estimate. Extrapolating the model parameters to real QCD data, the neutron electric dipole moment is evaluated to be $d_n = 1.8 cdot 10^{-16}, theta;ecdot mathrm{cm}$. The electric dipole moment of the proton is exactly the opposite.
We consider the fully constrained version of the next-to-minimal supersymmetric extension of the standard model (cNMSSM) in which a singlet Higgs superfield is added to the two doublets that are present in the minimal extension (MSSM). Assuming universal boundary conditions at a high scale for the soft supersymmetry-breaking gaugino, sfermion and Higgs mass parameters as well as for the trilinear interactions, we find that the model is more constrained than the celebrated minimal supergravity model. The phenomenologically viable region in the parameter space of the cNMSSM corresponds to a small value for the universal scalar mass m_0: in this case, one single input parameter is sufficient to describe the phenomenology of the model once the available constraints from collider data and cosmology are imposed. We present the particle spectrum of this very predictive model and discuss how it can be distinguished from the MSSM.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا