Do you want to publish a course? Click here

Probing the lightest new gauge boson $B_H$ in the littlest Higgs model via the processes $gammagamma to fbar{f}B_H$ at the ILC

147   0   0.0 ( 0 )
 Added by Xuelei Wang
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

The neutral gauge boson $B_H$ with the mass of hundreds GeV, is the lightest particle predicted by the littlest Higgs(LH) model, and such particle should be the first signal of the LH model at the planed ILC if it exists indeed. In this paper, we study some processes of the $B_H$ production associated with the fermion pair at the ILC, i.e., $gammagammato fbar{f}B_{H}$. The studies show that the most promising processes to detect $B_H$ among $gammagammato fbar{f}B_{H}$ are $gammagammato l^+l^-B_{H}(l=e,mu)$, and they can produce the sufficient signals in most parameter space preferred by the electroweak precision data at the ILC. On the other hand, the signal produced via the certain $B_H$ decay modes is typical and such signal can be easily identified from the SM background. Therefore, $B_H$, the lightest gauge boson in the LH model would be detectable at the photon collider realized at the ILC.



rate research

Read More

The physics prospect at future linear $e^{+}e^{-}$ colliders for the study of the Higgs triple self-coupling via the process of $e^{+}e^{-}to ZHH$ is investigated. In this paper, we calculate the contribution of the new particles predicted by the littlest Higgs model to the cross sections of this process in the future high energy $e^{+}e^{-}$ collider($ILC$). The results show that, in the favorable parameter spaces preferred by the electroweak precision, the deviation of the total cross sections from its $SM$ value varies from a few percent to tens percent, which may be detected at the future $ILC$ experiments with $sqrt{s}$=500GeV.
The new lightest gauge boson $B_H$ with mass of a few hundred GeV is predicted in the littlest Higgs model. $B_H$ should be accessible in the planed ILC and the observation of such particle can strongly support the littlest Higgs model. The realization of $gammagamma$ and $egamma$ collision will open a wider window to probe $B_H$. In this paper, we study the new gauge boson $B_{H}$ production processes $e^{-}gammato e^{-}gamma B_{H}$ and $e^{-}gammato e^{-}Z B_{H}$ at the ILC. Our results show that the production cross section of the process $e^{-}gammato e^{-}Z B_{H}$ is less than one fb in the most parameter spaces while the production cross section of the process $e^{-}gammato e^{-}gamma B_{H}$ can reach the level of tens fb and even hundreds of fb in the sizable parameter spaces allowed by the electroweak precision data. With the high luminosity, the sufficient typical signals could be produced, specially via $e^{-}gammato e^{-}gamma B_{H}$. Because the final electron and photon beams can be easily identified and the signal can be easily distinguished from the background produced by $Z$ and $H$ decaying, $B_H$ should be detectable via $egamma$ collision at the ILC. Therefore, the processes $e^{-}gammato e^{-}gamma B_{H}$ and $e^{-}gammato e^{-}Z B_{H}$ provide a useful way to detect $B_{H}$ and test the littlest Higgs model.
With the high energy and luminosity, the planned ILC has the considerable capability to probe the new heavy particles predicted by the new physics models. In this paper, we study the potential to discover the lightest new gauge boson $B_{H}$ of the littlest Higgs model via the processes $e^+e^- to gamma (Z)B_H$ at the ILC. The results show that the production rates of these two processes are large enough to detect $B_H$ in a wide range of the parameter space, specially for the process $e^+e^- to gamma B_H$. Furthermore, there exist some decay modes for $B_H$ which can provide the typical signal and clean background. Therefore, the new gauge boson $B_H$ should be observable via these production processes with the running of the ILC if it exists indeed.
In the context of the littlest Higgs$(LH)$ model, we study the process $ e^{+}e^{-}to tbar{t}$. We find that the new gauge bosons $Z_{H}$ and $B_{H}$ can produce significant correction effects on this process, which can be further enhanced by the suitably polarized beams. In most of the parameter space preferred by the electroweak precision data, the absolute value of the relative correction parameter $R_{B_{H}}$ is larger than 5%. As long as $1TeVleq M_{Z_{H}}leq 1.5TeV$ and $0.3leq cleq 0.5,$ the absolute value of the relative correction parameter $R_{Z_{H}}$ is larger than 5%. With reasonable values of the parameters of the $LH$ model, the possible signals of the new gauge bosons $B_{H}$ and $Z_{H}$ can be detected via the process $ e^{+}e^{-} to tbar{t}$ in the future $LC$ experiments with the c.m. energy $sqrt{S}=800GeV$. $B_{H}$ exchange and $Z_{H}$ exchange can generate significantly corrections to the forward-backward asymmetry $A_{FB}(tbar{t})$ only in small part of the parameter space.
133 - E. Boos 2014
Deviations from the standard Higgs sector generated by some new physics at an energy scale $Lambda$ could be described by an effective $SU(3)_c times SU(2)_L times U(1)$ invariant non-renormalizable Lagrangian terms of dimension six. A systematic study of various Higgs boson production channels ($gamma gamma$, $ZZ$, $WW$, $b bar b$, $tau bar tau$) at the International Linear Collider (ILC) in the SM extension by effective operators is carried out. Statistical methods are used to establish a degree of consistency for the standard Higgs sector with the forthcoming data, using the expected ILC accuracies of the Higgs boson production channels. Global fits in the two-parametric anomalous coupling space indicating to possible deviations from the standard Higgs-fermion and Higgs-gauge boson couplings are performed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا