Do you want to publish a course? Click here

Towards the robustness of the Affleck-Dine baryogenesis

54   0   0.0 ( 0 )
 Added by Shinta Kasuya
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the Affleck-Dine mechanism with various types of the Kahler potential, and investigate whether or not the Affleck-Dine field could acquire a large VEV as an initial condition for successful baryogenesis. In addition to a negative Hubble-induced mass term, we find that large enough Hubble-induced A-terms could also develop the minimum at large amplitude of the field. Therefore, the Affleck-Dine mechanism works for broader classes of the theories.



rate research

Read More

It is shown that, in the context of split supersymmetry, a simple model with a single complex scalar field can produce chaotic inflation and generate the observed amount of baryon asymmetry via the Affleck-Dine mechanism. While the inflaton quantum fluctuations give rise to curvature perturbation, we show that quantum fluctuations of the phase of the scalar field can produce baryonic isocurvature perturbation. Combining with constraints from WMAP data, all parameters in the model can be determined to within a narrow range.
Quantum fluctuations in the post inflationary Affleck-Dine baryogenesis model are studied. The squeezed states formalism is used to give evolution equations for the particle and anti-particle modes in the early universe. The role of expansion and parametric amplification of the quantum fluctuations on the baryon asymmetry produced is investigated.
We investigate the possibility of simultaneously explaining inflation, the neutrino masses and the baryon asymmetry through extending the Standard Model by a triplet Higgs. The neutrino masses are generated by the vacuum expectation value of the triplet Higgs, while a combination of the triplet and doublet Higgs plays the role of the inflaton. Additionally, the dynamics of the triplet, and its inherent lepton number violating interactions, lead to the generation of a lepton asymmetry during inflation. The resultant baryon asymmetry, inflationary predictions and neutrino masses are consistent with current observational and experimental results.
We study the Affleck-Dine (AD) baryogenesis in the inflating curvaton scenario, when the curvaton is a moduli field with O($10-10^2$TeV) mass. A moduli field with such mass is known to be free from the Polonyi problem, and furthermore its decay products can explain the present cold dark matter abundance. In our scenario, it further explains the primordial curvature perturbation and the present baryon density all together. The current observational bound on the baryon isocurvature perturbation, which severely constrains the AD baryogenesis with the original oscillating moduli curvaton scenario, is shown to put practically negligible constraint if we replace the oscillating curvaton with the inflating curvaton.
223 - S. W. Ham , Seong-a Shim , 2009
The possibility of explicit CP violation is studied in a supersymmetric model proposed by Dine, Seiberg, and Thomas, with two effective dimension-five operators. The explicit CP violation may be triggered by complex phases in the coefficients for the dimension-five operators in the Higgs potential, and by a complex phase in the scalar top quark masses. Although the scenario of explicit CP violation is found to be inconsistent with the experimental data at LEP2 at the tree level, it may be possible at the one-loop level. For a reasonable parameter space, the masses of the neutral Higgs bosons and their couplings to a pair of $Z$ bosons are consistent with the LEP2 data, at the one-loop level.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا